
JOURNAL OF COMPUTATIONAL PHYSICS 61, 154-185 (1985)

The Use of a Preconditioned Bi-Conjugate Gradient
Method for Hybrid Plasma Stability Analysis

ZORAN MIKI~: AND EDWARD C. MORSE

Department of Nuclear Engineering, Universiry of California, Berkeley, California 94720

Received January 5, 1984; revised September 11, 1984

The numerical stability analysis of compact toroidal plasmas using implicit time differencing
requires the solution of a set of coupled. 2-dimensional, elliptic partial dtfferential equations
for the field quantities at every timestep. When the equations are spatially finite-differenced
and written in matrix form, the resulting matrix is large, sparse. complex, non-Hermitian, and
indefinite. The use of the preconditioned bi-conjugate gradient method for solving these
equations is drscussed. The effect of block-diagonal preconditioning and of incomplete block-
LU preconditionmg on the convergence of the method is investigated. For typical matrices
arising in our studies, the eigenvalue spectra of the original and preconditioned matrices are
calculated as an illustration of the effectiveness of the preconditioning. We show that the
preconditioned bi-conjugate gradient method converges more rapidly than the conjugate
gradient method applied to the normal equations, and that it is an effective iterative method
for the class of non-Hermitian, indefinite problems of interest. 0 1985 Academic press, IX

I. INTRODUCTION

The study of the low-frequency (wMo,,) stability of compact toroidal plasma
equilibria requires the analysis of a hybrid particle-fluid model for plasma dynamics
[l-3]. In the parameter regime of interest, which is characterized by high p, low
aspect-ratio, and compact geometry, the ions in the plasma experience large
variations in the fields over their gyration period. Typically, the ratio of the ion
gyroradius to the plasma scale length is of the order of one tenth. An MHD
stability analysis of such devices would not include these finite Larmor radius
effects, and in cases of marginal stability or instability, the results would be incon-
clusive. Examples of devices in which finite Larmor radius corrections are crucial to
stability are field-reversed mirrors, O-pinches, and spheromaks.

We include ion kinetic effects in our model by treating the ions as finite particles
by standard particle-in-cell techniques. We assume that the electrons can be
represented by a collisionless, inertialess fluid, and that the quasineutrality con-
dition applies. Since the ion and electron temperatures can be comparable, we
include a finite electron pressure, and we assume an adiabatic equation of state for
the electrons. We also use the Darwin limit of Maxwell’s equations by neglecting

154
0021.9991185 $3.00
CopyrIght 0 1985 by Academx Press, Inc.
All rights of reproductmn m any form reserved.

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 155

the transverse displacement current [4]. We perform a linear stability analysis by
linearizing the equations about a given, self-consistent 2-dimensional (2D) axisym-
metric equilibrium, and solving for the perturbed fields numerically for a given
initial 3-dimensional (3D) perturbation, using finite difference methods in space and
time, to detect any growing instabilities.

Since the plasma is surrounded by a vacuum region which is included in the com-
putation domain, it is necessary to introduce a minimum “cutoff’ density, so that if
the density in any cell falls below this value, it is considered to be a vacuum cell.
The value for the cutoff density is typically less than a few percent of the maximum
plasma density. The appropriate plasma or vacuum equations are solved in each
region automatically, without the need for boundary conditions at the
plasma-vacuum interface. This allows for arbitrarily shaped vacuum regions [2, 51.
Since the stability of the time-integration scheme depends on the size of the
maximum Alfven speed in the plasma, the use of the cutoff density limits the Alvtn
speed to a reasonable value. This assumption is justified because the quasineutral
model is inappropriate for the low density region in any case.

Due to the “stiff’ nature of the plasma dynamics equations, the Courant restric-
tion on the timestep size [6] for a numerically stable explicit time-differencing
scheme limits the applicability of plasma simulation codes. For example, studies of
weakly growing instabilities (for which the growth rate is small compared to ti)<!)
may require several thousand timesteps to simulate. This has prompted recent
developments in the implicit time differencing of the plasma equations, which allow
the use of a much larger timestep [7-lo]. The impracticality of a fully implicit
algorithm for particle codes is due to the complicated relationship between the ion
current and density as collected from all the particles and the fields E and B. The
key to obtaining numerically stable algorithms at large timestep lies in making the
time differencing as implicit as possible, while still retaining efficiency in the
solution of the field equations and particle calculations. Here we wish to examine
the efficient solution of the field equations that arise in an implementation of a par-
tially implicit algorithm. We combine an implicit formulation of the field equations
with a predictor-corrector iteration on the particle ion terms [1].

The implicit treatment of the field equations requires an efficient method for their
solution at each predictor-corrector step, at every timestep. The equations, in
matrix form, produce a sparse, complex, non-IIermitian, indefinite matrix. We dis-
cuss the use of the preconditioned bi-conjugate gradient method for their solution.
Our emphasis is on the efficient solution of the field equations, as a tool in the
further development of implicit algorithms, rather than in the investigation of the
merits of specific choices of implicit methods. These issues are discussed further in
Section II.

The plan for the rest of the paper is as follows: in Section II we present the model
equations and the time differencing scheme used in getting the coupled set of elliptic
partial differential equations for the field quantities. These equations are then dif-
ferenced in space and written in matrix form. In Section III we present the bi-con-
jugate gradient method for solving these matrix equations and in Section IV we dis-

156 MIKIk AND MORSE

cuss several preconditionings we have used for the method. Finally, in Section V we
present some numerical results for the convergence of the bi-conjugate gradient
method for various preconditionings.

II. MODEL EQUATIONS

Using the assumptions of the previous section, the electron momentum equation,
the electron energy equation, and Maxwell’s equations, respectively, are

0= -en.iE+~)-Vp,+llei7,(J,+J,), (1)

($+u;V) (p2cy)=0,

kB=F(J,+J,);

VxE=-;;. (4)

These equations are supplemented by the quasineutrality condition

n, = n,,

the relation between electron current and velocity

J, = -en,u,,

and the ion particle equations of motion, which give J, and n, from the fields E and
B and the particle positions { rk, v~)~P. The assumption of quasineutrality and of
vanishing longitudinal current density on the system boundaries justifies the neglect
of the longitudinal displacement current in Eq. (3) [S]. Note that the electron
momentum equation includes an ad hoc resistivity q, which is also included in the
particle ion equations of motion for consistency. In the vacuum region, we solve

V2E = 0.

These equations are now linearized about an axisymmetric, self-consistent
equilibrium specified by E” = 0, B”, Jp, Jz, np, pz, and particle quantities (rz, vz}p
(which satisfy Eqs. (l)-(4) with a/at = 0). Representing the perturbed quantities as
6E, 6B,..., we get

6J xB”
0= -enfdE+z+

J”x6B
-A---V dp, + qenz(bJi + 6J,) + ye Sn,(Jp + Jz), (5) c C

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD

a SP e= -y(Gp,v~u~+p~v~6u,)-u~~v6p,-6u;vp~, at

V x 6B =: (6J, + 6J,),

vxd*= A.asB
c at ’

6J, = - e(nz &I, -I- 6~2,~~)

in the plasma, and

V2 6E=O,

6p,=O

in the vacuum, together with the linearized ion particle equations of motion [3].
Let us assume that the field quantities are known at timestep n, and that we

desire them at timestep II + 1. We difference the above equations implicitly in time
to second order accuracy. For example, Faraday’s law, Eq. (8) becomes

vx SE”I;+6E”)= -;(“B”+‘-6B”).
C At

After differencing all the equations in this manner, and eliminating all the variables
except 6E and 6p,, we get

2~; 6E” + ’ +dtJ;xVx6E”+‘+ g(VxVxGE”+‘)xB’

c2 At
+ 2V6p;+‘+-- 4n ~/~:VXVX~E~+~=W;+~+W”

and

+ (cAt)2~~v~.VxVx~E”+‘=S:‘+‘+S”
-G--SF-

(9)

in the plasma, with the appropriate vacuum equations, where pf= en: is the ion
charge density, and Ho =pznz-r is the electron entropy. The right-hand sides of
Eqs. (9) and f 10) contain terms dependent on the particle ion quantities SJ; + r and
6n; + l, which are grouped into W: + l and S: + l, and terms which only depend on

158 MIKIk AND MORSE

quantities defined at the previous timestep, which are grouped into W” and S”.
Note that Eqs. (9) and (10) can symbolically be written as

f,@E”+‘, bp:+‘)= W,(GE”+‘)+ W”, (11)

f,(6E” + I, Sp: + ‘) = S,(dE” + ‘) + S”, (12)

where f, and f, are linear partial differential operators in the spatial variables. Note
that if Eqs. (11) and (12) could be solved for 6E”+ ’ and 6p;+ 1 as they stand, the
resulting time differencing scheme would be fully implicit, and hence uncon-
ditionally stable, since the equations are linear (assuming that the particle
equations were integrated implicitly). However, it is apparent that this is only a for-
mal expression for i?E”+ ’ and Spz + ‘, since the terms W, and S, depend on 6E”+’
through the positions and velocities of all the particles. The solution to Eqs. (11)
and (12) for 6;E”” and 6p:+’ is thus performed in a predictor-corrector fashion.
Let m denote the predictor-corrector iteration number; then,

WK~:, d~:~+++:) = W,(dE;+ ‘) + W”,

f#E”,;‘, , Jp:m++:) = S,(GE”,+ ‘) + S

(13)

(14)

are used to solve for 6E;:‘, and 6pz:+: from 6E>+’ and 6~:: ‘. Starting from
6E;;+ i = 6E” (and similarly for dp,), we solve Eqs. (13) and (14) for 6E;+ ‘; we then
use this to update W, and S,, and to solve for 6E;+ i, etc. This is performed as
many times as necessary. In practice, only one predictor and one corrector step are
used. Note that correcting W,(6E;z+1) involves pushing all the particles with field
SE;+ l and the corresponding 6B. The solution of Eqs. (13) and (14) for 6E;z1, and
SP zM++: involves the inversion of the spatial difference operators f, and fP. This is the
topic to which the remainder of this paper is devoted.

We remark that the overall numerical stability of the algorithm depends on how
much of the dependence of Wj and S, on 6E”+’ is brought to the left side of
Eqs. (13) and (14) in the predictor-corrector solution of Eqs. (11) and (12). Note
that it is possible to treat much of the dependence of 6J, and &, on 6En+ 1
implicitly using techniques of the direct implicit method [7], or of the implicit
moment method [S-lo], thereby achieving stability at larger timestep. Such techni-
ques would change the operators f, andf, of Eqs. (13) and (14) to operators which
are less local [7]. Thus, the solution method for the inversion of f, and f, should
not depend critically on the details of the operators so as not to preclude a more
implicit future formulation. In the present implementation, we observe that the
algorithm is stable at larger timestep than is the explicit version. We have suc-
cessfully used the code with a timestep large enough to exceed the Alfven speed
Courant condition by a factor of 334, while still retaining numerical stability [111.
The limits on the timestep for this algorithm are discussed elsewhere [12].

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 159

Spatial Differencing and Matrix Representation

Since our equilibrium is axisymmetric, it is possible to Fourier-analyze the per-
turbation in the 8 coordinate,

6E(r, 8, z, t) = Re(GE(r, z, t) e”‘},

where 6E(r, 8, z, t) is the “physical” electric field, and 6E(r, z, t) is a complex lode
quantity (in differenced form). Since our equations are linear in the perturbation,
different toroidal mode numbers 1 do not couple, so that each I can be studied
separately [3]. With the above detinition, Eqs. (9) and (10) become four coupled 2-
dimensional partial differential equations in four complex fields 6E,.(u, z), 6E,. bE,,
and 6p, at every timestep.

Using standard finite-difference techniques, we form a uniform mesh in the [r, I)
domain

with NZ mesh points in the z direction and NR mesh points in the r direction. Since
storage considerations limit us to relatively coarse meshes, it is essential to use cen-
tered finite differences to achieve second-order accuracy in the spatial discretization.
Equations (9) and (LO) become a set of finite-difference equations, which can be
written in matrix form as

Ax=b,

where the unknown vector x is

N = NZ x NR is the total number of mesh points, and 6E: is the value of 6E, at the
kth mesh point. Note that the timestep index is now implicit. The right-hand side
vector b is the right-hand side of Eqs. (9) and (lo), similarly discretized. Thus,
Eqs. (13) and (14) become, in matrix notation,

Ax m+l =b,. (15)

where the dependence of b on the solution to the previous predictor-corrector step
x, has been indicated. The matrix A is a complex banded matrix with 9 block-
diagonals; each block is a 4 x 4 matrix, and expresses the linkage of the four
variables at each mesh point. In the case when periodic boundary conditions are
used in the z direction, the matrix A has additional elements at points
corresponding to the z boundaries [131. Equations (9) and (10) are written so that
the diagonal of the matrix is proportional to (Ax)‘, while the various off-diagonal
terms are proportional to At, At Ax, Ax, and (At)2/Ax. Thus the matrix tends to be
less diagonally dominant when the timestep is large or when the mesh is tine.

160 MIKIk AND MORSE

III. THE BI-CONJUGATE GRADIENT METHOD

Choice of Solution Method

In solving Eq. (1.5) we require a solution method which is sufficiently fast to per-
mit a time dependent simulation, subject to computer memory limits. For a typical
simulation of 1000 timesteps, with two predictor-corrector steps per timestep and a
requirement that each run use about 1 hour of CPU time, half of which is for par-
ticle pushing, the field solve time would be limited to about Is/field solve. This
places a stringent requirement on the rapidity of the field solver and is one of the
major penalties of an implicit algorithm. However, usually the advantage gained
through enhanced numerical stability more than overcomes this. For a spatial mesh
of 50 x 50 points, the complex matrix A has dimension 10,000. Considering that we
wish to conserve as much core memory as possible for particle quantities and fields,
it is evident that it is impractical to store the non-zero elements of A explicitly
(720,000 words of memory would be required to store A in this case). The use of a
direct method of solution is also inefficient for such a problem. Even though the
matrix would only have to be factored once (since the matrix does not change from
timestep to timestep), it would be necessary to store the factors externally on disk.
The I/O time in reading the matrix factors several times per timestep would be
prohibitive. (For example, for the above mesh, Gaussian elimination with partial
pivoting would produce matrix factors requiring about 12.5 million words of
storage.) Thus we require a fast iterative method which generates the elements of A
at each iteration; that is, the operation Ax is given as a rule for generating the vec-
tor Ax given the vector x, and not as an explicit matrix-vector multiply.

In making the choice of iterative method, we have to consider any special proper-
ties of A which may be exploited, such as symmetry, definiteness, diagonal
dominance, sparsity, and the nature of the eigenvalue spectrum of A. Additional
considerations involved are the memory requirements of the algorithm, the vec-
torization possibilities, and the complexity of coding necessary to implement the
method. The sparse matrix A in Eq. (15) is a complex, non-Hermitian, indefinite
matrix, which is not diagonally dominant. The absence of diagonal dominance is
due to the large variation of pp in Eqs. (9) and (10) in going grom the plasma
region to the vacuum region (typicahy by a factor of ~100). Given these proper-
ties, many of the traditional iterative methods are not applicable. For example, the
a priori convergence of SOR with absence of diagonal dominance cannot be
assured [141. The equations could have been written in a form suitable for solution
by AD1 [6,2]:

ac?E
- = f,(dE, +,I, at

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 161

However, the cross-derivative terms (arising from the V x V x operator) cannot be
treated easily to second-order accuracy in space and time. Also, the absence of
diagonal dominance could lead to ill-conditioning of the tridiagonal matrices
involved in the AD1 solution. The Tchebychev iterative method [15 J cannot be
used because the matrix A generally may have eigenvalues in both halves of the
complex plane.

We have chosen to use the bi-conjugate gradient method, a variant of the con-
jugate gradient method which is applicable to nonsymmetric matrices. The method
is highly vectorizable and does not require any parameters to achieve convergence.

The Preconditioned Conjugate Gradient Method

Due to the similarity of the bi-conjugate gradient (BCG) and conjugate gradient
(CG) methods, we first briefly discuss basic CG method and the role of precon-
ditioning. The theory of the CG method is well known, and is discussed in the
classical references [16-211. The CC method is presently regarded as an iterative
method for the solution of the linear system

Ax=b

characterized by a symmetric, positive-definite matrix A. At the ith step, the
estimate of the solution x, is improved from a vector in the subspace

“%$= Span{r,, Ar,, A’r, ,..., A’ro},

where r0 = b -Ax, is the initial residual and x,, is the initial guess to the solution.
The method produces parameters which minimize the quantity lle,lj i = (e,, Ae,),
where ei= x - xi is the error at step i, and (x, v) is the inner product xTv, by
generating polynomials which are small on the spectrum of A. At step i of the
iteration, the closeness of the approximation x, to the solution x depends on how
well a polynomial of degree i can be chosen to be small on the spectrum of A. This
depends on the condition number of A and the extent of “clustering” of the eigen-
values of A. The condition number rc(A) of A is defined as

which, in the case of a symmetric, positive-definite matrix reduces to the spectral
condition number

Lx(A 1
IctA)= &,,(A)’

where /z are the eigenvalues of A. When K(A) is large (A is “ill-conditioned”) then
the polynomial which is small on the spectrum will be of high degree, and con-
vergence is poor. On the other hand, if the eigenvalues of A are clustered, then it is

162 MIKIk AND MORSE

possible to find a low degree polynomial which is small on the spectrum, giving
rapid convergence [18, 22, 231.

Matrices arising from the finite differencing of partial differential equations tend
to have a continuous distribution of eigenvalues, so that the basic CG method is
not ideally suited to their inversion. Thus there is a need to develop effective
preconditionings of the matrix A to enhance the rate of convergence of the CG
method. From the above considerations, the goal of preconditioning is to transform
the original set

Ax=b

into an equivalent set

My=c

such that x can be recovered easily from y, and such that the matrix A4 has a more
favorable spectrum. Specifically, we desire that K(M)~K(A) and that the eigen-
values of M are more clustered than those of A. The present philosophy in precon-
ditioning, in achieving these objectives, is to multiply the set Ax = b by A”, an
approximate inverse of A, so that

A”Ax = A”b

or

Mx=c,

where M = JA and c = A”b. Thus, M will be an approximate unit matrix, so that
K(M)= 1 and there will be a substantial amount of eigenvalue clustering of M. The
application of the CG method to M would produce rapid convergence. The matrix
A” would be chosen to maintain the sparsity of the iteration matrix. Thus, precon-
ditioning is a compromise between maintaining sparsity and getting the best
approximate inverse of A. When viewed in this framework, the CG method with
preconditioning spans the gap between direct and iterative methods.

The Bi-Conjugate Gradient Method

The basic CG method is only applicable to symmetric, positive-definite matrices.
In the past, it has been extended to nonsymmetric matrices by applying the CG
method to the normal equations [19,24]

ATAx= ATb

or

Mx=c, (16)

where M= A*A and c = A*b. Clearly, M is a symmetric, positive-definite matrix, so

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 163

that the CG method can now be used on Eq. (16). The disadvantage of using the
above approach is that the condition number of the matrix M is the square of the
condition number of A:

K(M) = 7c(ATA) = K”(A).

Also, the spectrum of A4 is generally more spread out than that of A. In addition,
the solution is now improved from vectors in the space

K= Span(ATr,, A’(&*) rO, AT(AAT)2 ro,..., A*(AA*)’ ro),

which is numerically more difficult to resolve into orthogonal vectors than is ?;,
especially when K(A) is large. Since the CG method would be applied to the
preconditioned system, it might seem that the formation of the normal equations
would not reduce the convergence rate substantially, since the matrix would now be
well conditioned. However, in Section V we present some numerical results which
show that even though the preconditioned matrix is very close to the unit matrix,
the product ATA has a large condition number, and the CG method, as applied to
the normal equations, converges poorly.

The extension of the CG method to nonsymmetric, indefinite systems is not
trivial. Wowever, there is a need for a method which can be used on such systems
directly. In the context of conjugate gradients, the search is for a method which
improves the solution from the space KY;, which has a minimization property in
some norm of the error, and which satisfies a simple recurrence relation for
updating residual and search vectors. A method which possesses all of these proper-
ties is not available yet, although partial generalizations have been made. Fletcher
[25] and Paige and Saunders [26] have generalized the CG method to a sym-
metric, indefinite matrix, with an appropriate minimization property. Widlund [27]
and Concus and Golub [28] have developed a generalization to nonsymmetric
matrices with a positive-definite symmetric part, and their algorithms require that
this symmetric part of the matrix be easily invertible. Axelsson [29, 301 also dis-
cusses the formalism for the conjugate gradient method for nonsymmetric matrices,
but restricts his attention to matrices with a positive-definite symmetric part.
teuffel [15] has proposed a Tchebychev iterative procedure for a nonsymmetric
matrix with complex eigenvalues which can be enclosed in an ellipse in the right (or
left) half complex plane. Finally, recently there has been a generalization of the con-
jugate gradient method applicable to nonsymmetric and indefinite matrices by
Young and Jea [31], with an appropriate minimization property, but the method
requires the storage of all the previous search vectors. A truncated version of this
algorithm has been proposed; however, the possibility of breakdown of the trun-
cated algorithm still exists.

We have chosen the bi-conjugate gradient method as proposed by Fletcher [25].
The BCG method is also discussed by O’Leary [32] and Jacobs [33]. This method
is based on the Lanczos [34, 351 method for tridiagonalization of nonsymmetric

164 MIKIb AND MORSE

matrices. The BCG method is a gradient method, although it does not have a
minimization property as does the basic CG method. Thus, in general, the
monotonic decay of the error is not guaranteed and the possibility of breakdown or
instability exists. However, the method is a very powerful iterative scheme for non-
symmetric, indefinite systems when used judiciously. Our experience with the
problems arising here shows that the BCG method, when applied to a well-precon-
ditioned problem, converges rapidly, even though it does not possess a strict
minimization property. The numberical results in Section V support these
statements. Our numerical tests have shown that the BCG method is better than
the CG method applied to the normal equations. We did not experience any
problems with breakdown of the preconditioned BCG algorithm in solving the
matrix problem generated by Eqs. (9) and (10) in a wide parameter range.

Jacobs [33] has extended the BCG method to complex sets of equations. Of
course, it is possible to write the complex set into an equivalent set of real
equations of twice the dimension, but as Jacobs points out, and in our experience, it
is more efficient to apply the complex BCG algorithm to the original equations,
since there is usually a strong coupling between real and imaginary parts of the
variables.

The BCG algorithm is applied as follows [33]: Starting with a guess vector x0,
we define r0 = b - ,4x0, r0 = r$, p0 = rO, and PO = p$. For i = 0, 1,2 ,...,

(F,, r,)
“= (p,9 Api)’

X 1+1 = xi f cljply

(174

(17b)

r,+l = rI - QP,, (17c)

r;,+ 1 =r,-a,*AHj5,, (17d)

P I+l=PiPi+rL+13 (170

Pi+ 1 =P,*Pifr,+l, (1%)

where AH is the complex-conjugate transpose of A, and (x, y) is now x”~. Note
that two additional vectors are needed compared to the CG method. The amount
of work per iteration is only slightly greater than that required for the CG method
applied to the normal equations. However, the solution is still updated from the
space K. Note that when the matrix is symmetric and positive-definite, the BCG
method reduces to the basic CG method.

PRECONDITIONED BI-CONJUGATE GRADIENT hfETHOD 165

IV. FRECONDITIONINGS USED

The ultimate success of the BCG method will depend on the quality of the
preconditioning. In choosing a preconditioning, the nature of the use of the solver
should be considered, In our case, since the elements of the matrix A depend on
time-independent equilibrium fields and the system (15) is solved for many rigbt-
hand sides with the same A, it is prudent to maximize the convergence rate of the
BCG method by constructing a fairly elaborate preconditioning, since it is perfor-
med only once, while at the same time keeping the number of operations per
iteration small. The types of preconditionings currently used include: precondition-
ing by an incomplete LU decomposition [21, 19, 36, 131, simple diagonal scaling
[37, 381, preconditioning with several sweeps of SSOR [23, 241, preconditioning
with a part of the matrix representing a reduced portion of the differential operator
which is easily invertible [36,20-J, and preconditioning with the symmetric part sf
the matrix [20,27, 291.

We will present two classes of preconditioning which we have used successfully in
solving Eq. (15). Since our matrix represents the simultaneous solution of four
equations, we generalize the above-mentioned ideas by applying block-diagonal
scaling and incomplete block-LU decomposition. First, it is necessary to scale the
four equations with respect to each other. Namely, we scale the matrix A by
columns so that the elements corresponding to the different equations are of the
same order of magnitude. We consider our unknown vector x to consist of the
variables (6E, @JCL), where p is a scaling constant. This scales the columns of A
which correspond to the 6p, equation by the factor p. The constant fl is chosen to
make the elements of the vector x corresponding to 6E and 6p, have the same order
of magnitude. From an examination of Eqs. (9) and (lo), we set

where u, is the electron sound speed, vA is the Alfven speed, o,~ is the ion cyclotron
frequency, and L, is the scale length for variation of equilibrium fields. The values
used above are averages over the plasma. Note that this scaling is not applied
explicitly, but is incorporated into the definition of the modified matrix A.

We now establish some notation. We define a partitioning of the matrix A into
NB square blocks, each of dimension k, such that NB x k = dim(A) = N. Let A, be
the resulting block matrices in A, with i, j = 1, 2,..., NB. Let D be a block-diagonal
matrix with NB diagonal blocks D,, each of dimension k. Let the matrices L and U
be block lower triangular and block upper triangular matrices respectively, with the
same block structure as A.

1. Block Diagonal Scaling

We rewrite the set

Ax=b

166 MIKIb AND MORSE

as

AD-‘Dx= b, (19)

where D = block-diag(A). We assume that each of the blocks A, is non-singular.
This will be the case for matrices arising from properly differenced partial differen-
tial equations for a proper choice of partitioning. Thus, D, = A,, for i = 1,2,..., NB.
Writing Eq. (19) as

My=b, (20)

where M= AD-’ and y = Dx, we implicitly apply the BCG algorithm to Eq. (20).
If the matrix A is block-diagonally dominant, then

A=D+A,

with Il.4 I/ < 11011, and the matrix

M=AD-‘=I+AD-’

will be an approximate unit matrix. The motivation behind applying block diagonal
preconditioning (k > 1), as opposed to simple diagonal preconditioning (k = 1), is
that frequently even though A does not tend to be simply diagonally dominant
(loosely speaking), it may be block-diagonally dominant. In the case of Eqs. (9) and
(lo), for the choice k= 4 each block A, of A expresses the linkage of the four
variables 6E,, 6E,, 6EZ, and 6p, at each mesh point. Since there is no reason to
expect that one variable in each equation will be dominant over the others
throughout the region, A will not be simply diagonally dominant. However, for a
choice of parameters which tends to make the matrix diagonally dominant, there is
more likelihood of block-diagonal dominance than of simple diagonal dominance.

When BCG is applied to (20), the extra work per iteration is one multiplication
of the form D-lx and another of the form DPHx over the unpreconditioned ver-
sion. For small k this extra work is negligible. Since D is block-diagonal, D - ’ is
found once and for all by inversion of NB (k x k) matrices by Gaussian elimination.
The algorithm can be arranged in a form which only requires the knowledge of
D-l; the actual algorithm will not be given, since it is a special case of the next sec-
tion. The additional storage required for the preconditioned algorithm is the
storage for D-‘, which has kN (complex) elements.

2. Incomplete Block-LU Decomposition

This preconditioning involves writing A as

A=LD-‘U+E. (21)

Our intention is to obtain as complete a decomposition of A into L, D, and U as

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 167

possible (i.e., to minimize E), while still maintaining spar&y in the factors L and hi,
Then we can precondition the system (18) as

DL-‘AVIUx= DL-‘b,

or
My=c,

where M=DL-‘AU-‘, y= Ux, and c=DL-lb. Thus,

M=l+ DL-‘EU-“.

If l\Eli is small, then M will again be close to the unit matrix. It has been found that
this preconditioning (in the case of simple, not block, factorization) may reduce the
condition number of the matrix operator, and signilieantly clusters its spectrum
[21, 19, 36, 131. We intend to enhance this effect by using block preconditioning.

In order to economize on storage, we choose to maintain the same sparsity pat-
tern in L and U as in A, and further, we restrict the off-block-diagonal elements of
L and U to be identical to the corresponding lower and upper block-triangular
parts of A, respectively. Also, we define

block-diag(L) = D,

block-diag(U) = D.
(231

Thus, no additional storage is needed for the factors L and U, but only for D, and
the storage requirements are the same as above.

It is now necessary to choose D. If A were block-diagonally dominant, it would
be natural to choose D such that E would have zero elements along its block
diagonal. Thus we find D such that

block-diag(LD - r U) = block-diag (A). (24)

With the above definitions, it is easy to verify that the blocks D, can be recursively
found from

1-l

Di=A,- c A,,D,‘A,,
iI=1

for i = 1, 2 ,..., NB.
The use of (24) and the restriction imposed above on the off-block-diagonal

elements of L and U forces agreement between A and LD-“U only on the biock-
diagonal and on the outermost block-diagonal bands. This prescription is similar to
that used in [36] (for the k = 1 case), except that LD-‘U in [36] agrees with A at
all positions at which A is non-zero, since A is 5-diagonal there. It is possible to use
a more general incomplete decomposition which forces agreement of A and LD- i hi

581/61/l-12

168 MIKIb AND MORSE

at each position at which A has non-zero block elements, as in [21, 13, 191. This
restriction is only used for the purpose of conserving storage. Forcing agreement
between each additional block-diagonal of A and LD-lU requires additional
storage for bands in the factors L and U, each block-diagonal requiring the
equivalent of 2k2 meshes. Thus, the present strategy requires minimal additional
storage for the preconditioning, and is appropriate when the matrix is sufficiently
block-diagonally dominant. In practice, it works adequately for the present pur-
poses. However, in future applications, with possibly larger timestep, in which the
matrix may be less block-diagonally dominant, we may readily generalize the
preconditioning to include agreement between more block-diagonals of A and
LD-‘U, thereby improving the preconditioning at the expense of increased storage
requirements.

The BCG algorithm (17) is applied implicitly to Eq. (22), yielding, after some
rearrangement, for i = 0, 1, 2 ,...,

(264

X 1+1 = x, + a, u- ‘p,, G-1

Y 1+1 = rl - a,DL-‘AV’p,, (26~)

YI+,=Fi-cgpi, (26d)

p,= tyz+-l, li+l)
(rr, r,) ’

(264

Pi+ 1 =PiPl+ri+l,

P z+l =B,*pi+ U-HAWL-HDHyi+l,

Wf)

G’W

with r,, = DL-‘(b - Axe), Y0 = r,*, p. = ro, and PO = WHAHLpHDHFo. The
algorithm is implemented as follows. The matrix D-’ is stored rather than D. In
calculating D by Eq. (25), we first find D,, which is inverted using Gaussian
elimination to get D,‘; this is then stored and used in finding D,, 1. Once D-’ is
known, we can use routines which form the product of DL-‘, DU-‘, LpHDH, and
UwHDH with any vector, using standard back-substitution and forward-elimination.
Due to Eq. (23), these “multiplications” do not require knowledge of D, but only of
D-l. The algorithm for the block-diagonal scaling preconditioning can be obtained
as a special case of Eq. (26) by setting L + I, D -+ I, and U -+ D, where I is the unit
matrix.

It may seem that the workload per iteration has been doubled over the unprecon-
ditioned version. Each iteration now requires the products of the matrices
(DL-‘) AD-l(DU-‘) and (UpHDH) DmHAH(Lp HDH) with a vector. However,
with the preconditionings defined in this section, with the restrictions on L and U,
we can use a technique due to Eisenstat, reported in [36], to perform the above

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 169

operations with essentially the same effort as required to form the original products
of A and AH times a vector; see Appendix A.

Note that there is a possibility of ill-conditioning of the factors L and U. The
choice of block-diagonal of L and U (23) was made to prevent this from occur&
since if A tends to be block-diagonally dominant this choice will make L and U
well-conditioned. In the case of ill-conditioning it is possible to stabilize the precon-
ditioning by assuring block-diagonal dominance in L and U, or by preconditioning
(A + D block-diag(rl)) with cr chosen large enough [36, 393. It is also possible to
extend the suggestions of Kershaw [40] to the block-diagonal case. Instability in
these factors is an indication that A is not block-diagonally dominant with this
choice of block size. Since our preconditioning is based on the block-diagonal
dominance of A, the preconditioning produced in these unstable cases would be
poor, and an increase in block size would be the best way of “stabilizing” these fac-
tors. In practice it was not necessary to apply any of the above stabilizations except
for the increase in block size.

The natural choice of the block size seems to be k = 4 in our case due to the four
coupled equations. In fact we have only implemented the above preconditionings
with k = 1 and k = 4. It is interesting to note that with k = IV, corresponding to one
block, both of the preconditionings reduce the matrix A to the unit matrix,
corresponding to a complete decomposition, and convergence is achieved in one
iteration. Of course, this choice requires the evaluation of A - ‘, so that it is imprac-
tical. However, as we increase k we expect M to be increasingly closer to the unit
matrix, increasing the convergence rate of the BCG method. The optimum choice of
k thus becomes a compromise between storage requirements and the extent of
preconditioning.

The preconditionings available to us, in order of increasing effectiveness, are:

(a) diagonal scaling with k = 1,
(b) block diagonal scaling with k = 4,

(c) LU decomposition with k= 1,

(d) block-LU decomposition with k=4.

The above order also indicates the cost per iteration. From our previous comments,
it seems that (c) and (d) require almost the same operation count per iteration as
does the unpreconditioned algorithm. This is true; however, since we are using a
vector computer (Cray l), it turns out that the preconditioned algorithm is indeed
significantly slower in CPU time per iteration, because of the recursive nature of the
products DL- ‘, etc. This has to be kept in mind when choosing the precon-
ditioning. In general, it has been our experience that the choice is problem depen-
dent. We have treated cases in which the choice (b) led to a larger number of
iterations than did (d) but with a smaller total CPU time.

A note on the computational implementation of the problem is in order here. The
coding involved in generating Ax was simple even though the matrix A was not
explicitly stored in memory. However, the coding to generate products of An,

170 MIKIk AND MORSE

DL-‘, DU-‘, and especially of VHDH and L-HDH with a vector, and the deter-
mination of D using (25) were involved. These problems would have been eased if
the elements of A could be explicitly stored in core memory. With the advent of
large memory computers, it seems that the practical implementation of similar
algorithms will be greatly simplified. Nevertheless, our algorithm is vectorizable to
a large extent (and fully in cases (a) and (b)), which makes it an attractive method
on present vector computers.

V. NUMERICAL TESTS

We discuss four matrix examples associated with two typical plasma equilibria
for the spheromak device. The equilibria are obtained by numerically solving the
zero-order equations from Section II for a rigid-rotor ion distribution function
[41]. The first three examples are based on a high p equilibrium, with comparable
ion and electron currents and temperatures. For a choice of cutoff density equal to
0.5% of the maximum plasma density, the whole mesh turns out to belong to the
“plasma” region, so that the first three examples do not have a vacuum region. The
first three examples are generated by discretizing this equilibrium on successively
liner meshes. We use a 12 x 12 mesh for Example 1, a 22 x 22 mesh for Example 2,
and a 42 x 42 mesh for Example 3. (Note that two mesh points are used for boun-
dary points, so that the above examples correspond to successively halving the
mesh size.) The timestep is the same for all three examples, and is chosen so that
the maximum value of vA At/Ar = 0.48 for Example 1, where vA is the Alfvkn speed,
and Ar = AZ. We choose the I = 3 mode, with periodic boundaries in z, and we Con-
sider q = 0. Example 4 is derived from a low /? equilibrium, which was used to suc-
cessfully test the code for an Z= 1 tilt instability in the spheromak against the 6 W
MHD code GATO [42], in a parameter regime in which ion kinetic effects were
not expected to be important [ll]. This example uses a 26 x 50 (Y, z) mesh, with
Ar = AZ, with a timestep chosen so that the maximum value of vA At/Ar = 2.9.
Metallic boundaries surround the plasma, and q = 0. The cutoff density is chosen to
be 5% of the maximum plasma density, so that about 23% of the mesh belongs to
the vacuum region. This example represents a typical collection of parameters, and
the matrix generated should be regarded as most representative of the problems of
interest here.

As discussed in Section II, the matrix A is generated from the equilibrium fields.
In this section, we shall use M to denote the preconditioned matrix corresponding
to the most effective preconditioning, incomplete block-LU decomposition with
k = 4. The various methods of solution of Ax = b were compared in the following
way. For an exact solution of

x=[l+i, l+i, l+i ,..., l+ilT,

the right-hand side vector b was found from b = Ax. The system was then solved

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 171

using each of the methods below to lind the solution x. This process enabled us to
compare the actual error norm at iteration step i,

for the various methods. The methods were initialized with the same randomly
chosen initial guess x0. The stopping criterion used was:

e(l)
stop when - < E, (p

with E = 1W9.

Eigenvalue Calculations

In analyzing the effects of preconditioning, it is instructive to look at the spectra
of the original and preconditioned matrices. For Example 1, which produces a small
matrix, we used standard EISPACK [43] routines to get the complete spectra of A,
M, AHA, MHM, and the Hermitian part of A. For Examples 224, we used the
power method and the inverse power method, with optional shifts [44], to find the
extreme and some isolated eigenvalues of the larger matrices produced. The inverse
power method on these large problems was implemented by using out-of-core
Gaussian elimination with partial pivoting to factor the matrices [45]. Consequent-
ly, these calculations were very time consuming, especially in I/O time. Using these
procedures, we were able to find the maximum and minimum eigenvalues of AHA

TABLE I

Summary of Spectral Information for Examples 1-4

Mesh size and
Example (Matrix dimen-

sion)

a a nun> max
of Hermitian
part of matrix Condition number

I(M) furthest
A M from 1 + 0~ GA) K(M)

1 12 x 12 - 1.88, - 1.78, 0.8cM.04i 1.51 x 10” 3.36 x !O’
(576) 25.1 3.80

2 22x22 - 2.47, 10.1, 1.44 0.w + 5.42 x lo2 5.91 x 10’
(1936) 6.82 12.1

3 42x42 - 2.75, - 52.7, 0.28 - 0.041 3.26 x lo4 2.24 x lo4
(7056) 3.02 54.1

4 26 x 50 -0.798, - 2.69, 0.15 -0.03i 2.23 x lo3 2.14 x IO*
(52W 1.21 4.46

172 MIKIk AND MORSE

and MHM, and hence the condition numbers of A and M, the eigenvaiue furthest
from 1+ Oi for M, and to find the maximum and minimum eigenvalues of the Her-
mitian parts of A and M. These results are summarized in Table I. Note that we
could determine whether the Hermitian parts of A and M were definite by examin-
ing whether their maximum and minimum eigenvalues had different signs. The
spectrum computations for the large matrices are computationally difficult;
however, we were able to obtain sufficient information to analyze the effect of
preconditioning.

EXAMPLE 1. This example produces a matrix of dimension 576. This coarse-
mesh problem is used to exhaustively discuss the preconditioning and convergence
of the BCG method with reference to the eigenvalue spectra of the original and
preconditioned matrices, due to the ease of computation of the spectrum for a small
problem. The matrix A in this case has a large degree of diagonal dominance
because the diagonal is proportional to (dr dz), leading to a well-conditioned
matrix. Figure 1 shows the location of the eigenvalues of A in the complex plane,
while Fig. 2 shows the eigenvalues of the matrix M. Also shown in Figs. 1 and 2 are
the optimal ellipses which enclose the spectra of A and M. These ellipses are
obtained from the theory of the nonsymmetric Tchebychev iterative method and
will be referred to later in this section. Note that the eigenvalues of M are tightly
clustered about the point 1 + Oi so that the preconditioned matrix M is indeed
“close” to the unit matrix, showing that incomplete block-LU decomposition
preconditioning is effective. Note from Table I that the matrix in this example is
representative of the problems of interest, since A is indefinite (its Hermitian part
has 74 negative and 502 positive eigenvalues) and is substantially non-Hermitian
(Fig. l), although the matrix is more diagonally dominant than usual.

8

0 4 8 12 16 20 24

REAL

FIG. 1. Location of the eigenvalues of the unpreconditioned matrix A in the complex plane and the
optimal ellipse enclosing the spectrum for Example 1.

PRECONDITIONED BI-CONJUGATE GRADlENT METHOD 173

-0.11
0.8 0.9 I.0 I.1 I.2

REAL

FIG. 2. Location of the eigenvalues of the preconditioned matrix M in the complex plane and the
optimal ellipse enclosing the spectrum for Example 1.

Figure 3 shows the value of the error norm e(‘) versus the iteration number i for
the various preconditionings when the BCG method was applied to Example 1.
These results show that the convergence of the BCG method improves as we
increase the block size from k = 1 to k = 4, and as we go from the diagonal scaling
preconditioning to the incomplete LU decomposition preconditioning, as expected.
Table II shows the timing information and the number of iterations necessary for
convergence for the various preconditionings for this example. Note that the
preconditioning time is not relevant for comparison of the preconditionings, since
in our applications only one preconditioning is necessary for solution with many
right-hand side vectors b. The total CPU iteration time is about the same for both
block-diagonal scaling and incomplete block-LU decomposition preconditionings
(with k=4), even though the number of iterations is different. Thus, since the

Id I- 1 ’ ’ ’ ’ ’ ’ ’ ’ ’ I ’ ’ ’
0 20 40 60 80 100 120 140

ITERATION i

FIG. 3. Plots of the error norm e(l) versus iteration number i, corresponding to the various precon-
ditionings for the BCG method on Example 1. The plots corresponding to the different preconditionings
are: A is for simple diagonal scaling (k = 1); B is for block diagonal scaling (k =4); C is for simple
incomplete LU decomposition (k = 1); D is for incomplete block-LU decomposition (k = 4).

174 MIKIi: AND MORSE

TABLE II

Timing Information for the BCG Method on Example 1

Preconditioning

type

No. of iterations Total CPU Time used
CPU time per needed to achieve iteration
iteration (ms) x!!L< 10-g

for pre-

.(O) ’ cost (s) conditioning (ms)

No preconditioning 6.0 159 0.954 0

Simple diagonal
scaling (k = 1) 6.1 46 0.280 0.39

Block diagonal
scaling (k = 4) 6.9 26 0.179 1.9

Simple LU
decomposition (k = 1) 14.6 15 0.219 17

Block LU
decomposition (k = 4) 17.4 10 0.174 23

criterion for choice of preconditioning is the minimization of CPU time, the choice
of most effective preconditioning is not always the most desirable.

Figure 4 compares the convergence of the BCG method with that the CG
method as applied to the normal equations written in real variables. Two versions
of the CG method are used: on is due to Kershaw [19], and it minimizes the
Euclidean norm of the error I/x-x~\[~, while the other is due to Hestenes and
Stiefel [16], and it minimizes the Euclidian norm of the residual lIA(x, - x)llz.

ITERATION i

FIG. 4. Plot of the error norm e(‘) versus iteration number i, corresponding to the most effective
preconditioning for the BCG method and the two (normal-equation) CG versions on Example 1.

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 175

(This is true for the unpreconditioned versions only; for the preconditioning used
here, the quantities minimized are I/ U(x - xi)11 2 and IIDL-‘A(x - x,)[/ *, respec-
tively.) These two versions are denoted by CG(MINERR) and CG(MINRES),
respectively. Both versions seem to perform similarly, although there is a slightly
smoother error reduction for the latter version. All methods are applied to the
preconditioned matrix M for the most effective preconditioning. Note from Fig. 4
that the BCG method only required 10 iterations to converge, while both CG
methods required 85. This figure indicates that CG performs poorly on this exam-
ple, even though the eigenvalues of M, as shown in Fig. 2, are clustered about
1 + Oi. This is because the matrix MHn,i, which is used in the Krylov sequence for
the CG method as applied to the normal equations, does not have a spectrum that
is as clustered. Figure 5 shows the distribution of the eigenvalues of &PM.
(Actually, the matrix M is converted to a real matrix & of twice the dimension
when the CG method is used. The resulting matrix aTfi has the same spectrum as
M”IM, except that each eigenvalue has multiplicity two.) Note that even though
approximately 480 of the 576 eigenvalues are clustered about the value 1, about 50
eigenvalues in the top end, and about 50 in the lower end of the spectrum are dis-
tributed between the maximum and minimum values. For this matrix, A,,, = 33.08
and I,,=O.O2928, so that x(iWHM)= 1.13 x 103. Thus M”M is not a very well-
conditioned matrix. From the bound on the convergence rate of the CG metho
given by the Tchebychev method [23], the number of steps needed to reduce the
error by a factor E is less than or equal to

IO2 ,

I 100 200 300 400 500 576
INDEX i

FIG. 5. Plot of the eigenvalue spectrum of the matrix M*M corresponding to the most effective
preconditioning for Example 1. The eigenvalues are arranged in increasing order.

176 MIKIk AND MORSE

where K is the matrix condition number. For the matrix IMHA4, this gives n = 360
for E = lo-‘. Indeed, as discussed previously, the CG method converges in only 85
steps since only about 100 of the eigenvalues are essentially distinct. However, the
BCG method does even better.

We now compare the BCG method to the optimal Tchebychev method. A
posteriori, in this example the nonsymmetric Tchebychev method of Manteuffel
[15] can be applied to both A and M, since it happens that their eigenvalues have
positive real parts. The Tchebychev method requires as parameters the center and
focus of the family of ellipses which enclose the spectrum of the matrix, but do not
enclose the origin. As discussed in [15], the optimal ellipse chosen in the
Tchebychev method is the one that minimizes the maximum, over all eigenvalues,
of the asymptotic convergence factors at each eigenvalue. Thus, the method is
optimal in the sense that the asymptotic convergence factor is minimized over all
ellipses enclosing the spectrum. With the known spectrum of M we obtained the
parameters of the ellipse that solves this min-max problem. Appendix B discusses
the details of this procedure. This was earlier referred to as the optimal ellipse, and
is shown in Fig. 2. Using the parameters of this optimal ellipse, we applied the
Tchebychev method to the matrix M. Figure 6 shows the convergence of the BCG
and Tchebychev methods for Example 1 on the matrix M for the most effective
preconditioning. Note that the convergence is similar for both methods, and that
the convergence rate is predicted well by the asymptotic convergence factor for the
Tchebychev method, which is (from Appendix B)

r=0.1231.

0 I 2 3 4 5 6 7 8 9 IO II
ITERATION i

FIG. 6. Plot of the error norm e(‘) versus iteration number i. for the BCG and Tchebychev methods
applied to the matrix h4 corresponding to most effective preconditioning for Example 1.

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 177

The predicted number of steps needed to reduce the error by a factor E is

nxint
In E L 1 iG+l ’

which gives n = 10 for E = 10e9.
By analogy with the CG method and the Tchebychev method for symmetric,

positive-definite matrices [171, one may wonder whether the BCG method will per-
farm better than the nonsymmetric Tchebychev method because account is being
made of the internal details of the spectrum. The previous example could not show
this, because the spectrum of M was already clustered by the preconditioning and
the internal details of the spectrum would not affect the convergence substantially.
To test this conjecture we applied both BCG and the Tchebychev method to the
unpreconditioned matrix A. The optimal parameters were calculated for the
Tchebychev method from the spectrum of A. Figure 7 shows the convergence of the
two methods. BCG converges in 159 iterations, compared to 499 required by the
Tchebychev method. Thus, the BCG method indeed exhibits a “superlinear” con-
vergence rate. (Note that for Tchebychev now Y = 0.9614, giving an estimate of 527
steps for convergence.) From these results we deduce that the BCG method com-
pares favorably with the optimal Tchebychev method, at least on this example. The
spectrum of the matrix operator is usually not known, so that the optimal
Tchebychev parameters are generally not available, in contrast to the BCG method
which does not require any parameters.

EXAMPLES 24. The dimensions of the matrices produced in Examples 2-4 are

0 loo 200 300
ITERATION i

FIG. 7. Plot of the error norm 4’) versus iteration number i, for the BCG and Tchebychev methods
applied to the unpreconditioned matrix A of Example 1.

178 MIKIt: AND MORSE

1936, 7056, and 5200, respectively. As shown in Table I, the matrices A and M for
all of these examples have indefinite Hermitian parts. (For Example 2, the Her-
mitian part of A has 170 negative, and 1766 positive eigenvalues.) Note that Exam-
ples l-3 all correspond to the same physical problem, and show the dependence on
the mesh size of the condition number of the matrices, the effectiveness of the
preconditioning, and the performance of the BCG method.

Table III summarizes the performance of several gradient methods on these
examples. The number of iterations required for convergence (i.e., to reduce the
error by a factor of 109), or the amount of reduction of the error if no convergence
occurs in 500 iterations, is shown. Note that two additional methods are included;
the modified minimum residual conjugate gradient (MMRCG) method [46, 471,
and the basic CG method [16], both of which are applied to the equations written
in real variables. The basic CG method is included even though it does not strictly
apply to these problems. Note that in fact it diverges on the preconditioned Exam-
ples 2-4, but converges on Example 1 in fewer iterations than does the CG method
applied to the normal equations! (The version of the CG method applied to the
normal equations in Table III is CG(MINRES), though CG(MINERR) performs
similarly.) The MMRCG method is discussed below.

Note that in all cases BCG on the preconditioned problem is far superior to the
CG method applied to the normal equations. Also note that the preconditioning
used on the BCG method improves the convergence substantially. Results for the
other methods on the unpreconditioned versions of Examples 2-4 were not included
because of the very slow convergence or divergence of these methods. Figure 8 com-

TABLE III

Summary of the Convergence of Various Gradient Methods on Examples 14

Number of iterations

Example

1

2

Unprec. Prec.
BCG BCG

(on A) (on M)

159 10

498 17

Prec.
CG(MINRES)

(on Ml

85

500
(2.7 x 10-4)

Prec. Prec.
MMRCG CG

(on W (on w

10 25

21 Divergent

500
(2.3 x 1O-2)

500
(1.1 x 10-i)

33

51

(1.7
ZYO-1)

500
(1.8 x 10-4)

54 Divergent

78 Divergent

Note. Shown are the number of iterations required to achieve e(z)/ec0) < 10eg; if no convergence occurs
in 500 iterations, then ecsoo)/e(o) is shown.

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 179

0 100 200 300 400 500

ITERATION i

FIG. 8. Comparison of the BCG and the two (normal-equation) CG methods on Example 4 for the
most effective preconditioning.

pares the preconditioned versions of the BCG method and the CG methods applied
to the normal equations for Example 4 and shows the superiority of the BCG
method. Figure 9 shows the effect of the block preconditionings on the convergence
of the BCG method on Example 4. The convergence is improved significantly by
the preconditioning, especially for the most effective preconditioning. It is evident
that preconditioning is essential for the success of the BCG method, especially for
the larger problems. Tables I and III suggest that preconditioning improves con-
vergence by clustering the eigenvalues, rather than by reduction of condition num-

to-* ’
I,

0 100 200 300 400 500

ITERATION i

FIG. 9. Plots of the error norm e”’ versus iteration number i, corresponding to the block precon-
ditionings for the BCG method on Example 4. The key to the preconditionings is the same as ir, the cap-
tion to Fig. 3.

180 MIKIk AND MORSE

ber, although we note that the large condition number of M is due to a few out-
lying eigenvalues of MHM.

In a time-dependent simulation, a good initial guess x0 is available from the
solution at the previous timestep or from the solution at the previous predictor-
corrector step. Furthermore, in our applications, a smaller convergence criterion
could be used; E = 10e4 is usually adequate. Hence, in practice, the number of
iterations required in code runs would be smaller than the values reported here. In
fact this has been observed in actual code runs.

Negative Eigenvalues

It is interesting to know how well the BCG method converges when the iteration
matrix has eigenvalues with real parts of both signs. The issue of whether it is
typical for A to have eigenvalues with real parts of both signs has not been fully
resolved. Example 1 does not have any eigenvalues with negative real parts (which
we shall refer to as “negative eigenvalues” for brevity). As for Examples 224, by
limited application of the inverse power method with shifts, we did not locate any
negative eigenvalues. However, these matrices, especially the larger ones, may in
fact possess negative eigenvalues. It is difficult to find them with the inverse power
method because they occur with large imaginary parts, clustered about the
imaginary axis, close to other eigenvalues with positive real parts. By the Ger-
schgorin disk theorem [14], we may expect such eigenvalues to occur when At is
large, and when Ax is small, since the dominant term on the matrix diagonal is a
positive term proportional to pp(Ax)*, and most off-diagonal terms are propor-
tional to At. Since we could easily find the complete spectrum of a coarse-mesh
problem like Example 1, we found several 12 x 12 examples which did possess
negative eigenvalues. These occur when At and I are large, or when Ax is small. We
also found that when the diagonal of the matrix A of Example 1 was decreased by a
factor of 25 (which simulates the artijkial reduction of Ax by 5), and the timestep
was increased by a factor of 2.5, leaving all other terms unchanged, the scaled
matrix had six negative eigenvalues. Hence it is possible for the problems of interest
to have negative eigenvalues.

Even though A may have negative eigenvalues, note from Table I that in all four
examples, all of the eigenvalues of M have positive real parts. It is likely that for a
good preconditioning M may have a few, or possibly no negative eigenvalues.

For the sake of examining the performance of the BCG method on a problem
with negative eigenvalues, we created two examples. These are both based on the
equilibrium and mesh of Example 1, but a higher cutoff density (6.5% of the
maximum) is used, creating a vacuum region around the plasma. Of the 100 inter-
nal mesh points, 20 belong to the vacuum region. In the first example (a), we solve
-V* 6E = 0 in the vacuum, so that this term generates positive terms on the matrix
diagonal, while for the second example (b), we solve +V2 6E = 0 in the vacuum,
creating negative terms on the diagonal. As expected, (a) does not have any
negative eigenvalues, while (b) has 60 negative eigenvalues (three for each of the

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 182

vacuum mesh points, due to the vector nature of the equation). Both examples have
identical condition number, equal to 44.5, which is similar to the condition of A in
Example 1. Example (b) has a similar spectrum to that of Fig. 1, except that it has
60 eigenvalues with negative real parts distributed evenly in the interval [- 33.1,
-6.81, with small imaginary parts.

The BCG method was applied to these examples. Without preconditioning, the
BCG method converges in 82 iterations on (a), and in 189 iterations on (b). Thus
the BCG method converges even when the matrix has negative eigenvalues, for this
particular problem. BCG also converged on the other examples with negative eigen-
values discussed previously (although the convergence was slow in some cases due
to the large condition number of the matrices). Note that the difference in the num-
ber of iterations between the two problems may be due to, in part, the fact that the
eigenvalues of (b) are less clustered than those of (a). The preconditioned versions
of BCG took 15 iterations to converge on both examples, as expected, since the dif-
ference in sign is trivially removed by the preconditioning. The CG method applied
to the normal equations was tried on these two examples. As expected, the CG
methods converged identically on both (a) and (b). CG(MINRES) converged in
355 iterations, while CG(MINERR) converged in 349 iterations, on the unprecon-
ditioned problems.

We also tried the MMRCG method on these examples. The MMRCG method
minimizes the norm of the residual lIrJz, and is applicable to nonsymmetric
matrices [46,47]. It does not rely on the formation of the normal equations.
Fletcher discusses the relationship between the BCG and MMRCG methods for
symmetric, indefinite matrices [25]. (The MMRCG method is called the “minimum
residual algorithm” in [25].) Axelsson discusses the use of the MMRCG method
for nonsymmetric problems which have a positive-definite symmetric part [30, 291.
On the examples treated here, we found that the MMRCG method works com-
parably to BCG on well-preconditioned problems in the number of iterations
required to achieve convergence, but as the condition number of M increases, the
number of iterations required over BCG increases (see Table III). Note that each
iteration of MMRCG is about half as expensive as one of BCG, since only one
matrix-vector product is required (compared to two with BCG). We observe that
preconditioned MMRCG converges even when the Hermitian part of M is
indefinite, for all four examples studied (see Tables I and III). However, we found
that when the iteration matrix had eigenvalues with real parts of both signs, the
MMRCG method did not converge. For example, on (a) above, unpreconditioned
MMRCG took 306 iterations, while it did not converge at all on (b) (the error was
reduced in the first few steps, after which further iterations failed to improve the
solution).

182 MIKIk AND MORSE

VI. CONCLUSION

The implicit time integration of the hybird plasma dynamics equations requires
an efficient iterative method for the solution of the field equations. The set of
simultaneous equations produced by the discretization of the field equations is
characterized by a complex, sparse, non-Hermitian, indefinite matrix. We have
demonstrated the use of the preconditioned bi-conjugate gradient method for the
solution of such equations. A natural generalization of diagonal scaling and incom-
plete LU decomposition to the block case produces a class of effective precon-
ditionings for our problems. The method compares favorably with other iterative
methods for the class of problems studied. For an effective preconditioning, the bi-
conjugate gradient method proves to be a feasible iterative method for the solution
of the field equations arising in hybrid plasma stability analysis.

The development and further study of similar iterative methods which possess
rapid convergence and a wide domain of applicability will allow greater flexibility
in the design of improved implicit algorithms, with the attendant gain from the use
of a larger timestep.

APPENDIX A: EFFICIENT PRECONDITIONED ALGORITHM

The BCG algorithm with incomplete block-LU decomposition preconditioning
requires the product to the matrices DL-'AU-' and UeHAHLeHDH with a vector.
With the preconditioning defined in Section IV, this can be accomplished efficiently
with almost the same amount of work required in forming the products of A and
AH with a vector. Since the off-block-diagonal parts of L and U are identical to
those of A, and because of (23), we can write

where Q = block-diag (A). Thus,

and the above product can be generated by only using routines which form the
products of DL-', DU-', Q, and D-' with a vector. By appropriately storing
intermediate vectors, the above matrix product can be achieved by only one call to
each of the above routines. Similarly, we have

(U-HAHL-HDH)~={U-~DH+L--HDH~~+U-~DH(D--HQH-~~)-&X.

The above ideas are due to Eisenstat, and are reported in [36].

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 183

APPENDIX B: TCHEBYCHEV PARAMETERS

Here we present the details of the min-max problem associated with the ellipses
in the complex plane which enclose the spectrum of the matrix M (or A)> which are
required in the nonsymmetric Tchebychev method. The reader is referred to Man-
teuffel [15] for further details. We wish to find the complex parameters d and c,
where d is the center of the family of ellipses with foci at d + c and d - c which
enclose the spectrum of the matrix 44, and which minimize the maximum, over all
eigenvalues, of the asymptotic convergence factors at each eigenvalue. The
asymptotic convergence factor at eigenvalue I, is

Care is needed in choosing the right branch of the square root [15]. We wish to
find the values of c and d such that

Manteuffel discusses an analytic procedure for finding c and d for a real matrix
[151. For our complex matrix A4 we perform the above minimization numerically.
Note that the maximum over A, of r(d, c, A,) occurs for A, in the hull R of M, the
set of eigenvalues which are the vertices of the smallest convex polygon enclosing
the spectrum of M. Thus, we numerically determine the values

at values dk, ck defined on a mesh in the complex plane, choosing the smallest value
of rk as the minimum. This was done rapidly on a coarse mesh, and improved by
refining the mesh.

Since the eigenvalues of M and A are known, we determined the optimal
parameters for these matrices numerically as described above. For M, the hull con-
tained seven eigenvalues, and the optimal ellipse had

d = 0.98 1 + 0.002% and c = 0.1698 + O.O365i,

giving an asymptotic convergence factor of

r=0.1231,

which was reached at eigenvalue ,I = 1.021+ 0.06681. For the matrix A, there were
12 eigenvalues in the hull, and the ellipse parameters were

d = 13.25 - 2.3i and c=S.l-2.4,

581/61/l-13

184 MIKIb AND MORSE

with an associated asymptotic convergence factor

r=0.9614,

which was reached at 1= 0.4096 + Oi. The ellipses corresponding to these optimal
parameters are shown in Figs. 1 and 2. These optimal parameters were used in the
Tchebychev iteration for A4 and A in Example 1.

ACKNOWLEDGMENTS

We thank Alex Friedman for helpful discussions and for providing us with a listing of his code
RINGHYBRID [?I. Many of the ideas in the code were used in the present work. We also wish to
thank the reviewers, whose helpful comments substantially improved the content of this paper. This
work was supported in part by the U.S. Department of Energy under Contract DE-AT03-76ET53064.
The computations were performed at the National Magnetic Fusion Energy Computer Center, Liver-
more, California.

REFERENCES

1. J. A. BYERS, B. I. COHEN, W. C. CONDIT, AND J. D. HANSON, J. Comput. Phys. 27 (1978), 363.
2. D. W. HEWETT, J. Comput. Phys. 38 (1980) 378.
3. A. FRIEDMAN, R. N. SUDAN, AND J. DENAVIT, J. Comput. Phys. 40 (1981), 1.
4. A. N. KAUFMAN AND P. R. ROSTLER, Phys. Fluids 14 (1971), 446.
5. D. S. HARNED, J. Comput. Phys. 47 (1982) 452.
6. R. D. RICHTMYER AND K. W. MORTON, “Difference Methods for Initial-Value Problems,”

Interscience, New York, 1967.
7. A. B. LANGDON, B. I. COHEN, AND A. FRIEDMAN, J. Comput. Phys. 51 (1983), 107.
8. R. J. MASON, J. Comput. Phys. 41 (1981), 233.
9. J. DENAVIT, J. Comput. Phys. 42 (19X1), 337.

10. J. U. BRACKBILL AND D. W. FORSLUND, J. Comput. Phys. 46 (1982), 271.
11. Z. MIKIC AND E. C. MORSE, “FLARE: A 3D Linearized Compact Torus Stability Code,”

Proceedings of the Annual Controlled Fusion Sherwood Theory Meeting, Lake Tahoe, Nevada,
1984.

12. Z. MIKI~, “Kinetic Stability of Compact Toroidal Plasmas,” Ph.D. thesis, University of California,
Berkeley, 1985.

13. J. A. MEIJERINK AND H. A. VAN DER VORST, J. Comput. Phys. 44 (1981) 134.
14. R. S. VARGA, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, N. J., 1962.
15. T. A. MANTESJFFXL, Numer. Math. 28 (1977) 307.
16. M. R. HESTENES AND E. STIEFEL, J. Res. Natl. Bur. Standards 49 (1952) 409.
17. J. K. REID, in “Proceedings of the Conference on Large Sparse Systems of Linear Equations” (J. K.

Reid, Ed.), Academic Press, New York, 1971.
18. M. HESTENES, “Conjugate Direction Methods in Optimization,” Springer-Verlag, New York, 1980.
19. D. S. KERSHAW, J. Comput. Phys. 26 (1978), 43.
20. P. CONCUS, G. H. GOLUB, AND D. P. O'LEARY, in “Sparse Matrix Computations” (J. R. Bunch and

D. J. Rose, Eds.), Academic Press, New York, 1976.
21. J. A. MEIJERINK AND H. A. VAN DER VORST, Math. Comput. 31 (1977), 148.
22. A. JENNINGS, J. Inst. Math. Appl. 20 (1977), 61.

PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 185

23. 0. AXELSSON, in “Sparse Matrix Techniques,” Copenhagen 1976, Lecture Notes in Mathematrcs
Vol. 572 (V. A. Barker, Ed.), Springer-Verlag, Berlin, 1977.

24. A. BAYLISS, C. I. GOLDSTEIN, AND E. TURKEL, J. Comput. Phys. 49 (1983), 443.
25. R. FLETCHER, in “Numerical Analysis,” Dundee 1975, Lecture Notes in Mathematics Vol. 506 (6. A.

Watson, Ed.), Springer-Verlag, Berlin, 1976.
26. C. C. PAIGE AND M. A. SAUNDERS, SIAM J. Numer. Anal. 12 (197S), 617.
27. 0. WIDLUND, SIAM J. Numer. Anal. 15 (1978), 801.
28. P. CONCUS AND G. H. GOLUB, in “Proceedings, 2nd Int. Sympos. Computer Methods in Applied

Sciences and Engineering, IRIA Paris, Dec. 1975” (R. Glowinski and J. L. Lions, Eds.), Lecture
Notes in Economics and Mathematical Systems Vol. 134, Springer-Verlag, Berlin, 1976.

29. 0. AXELSSON, in “Numerical Analysis,” Dundee 1979, Lecture Notes in Mathematics Vol. 773 (G. A.
Watson, Ed.), Springer-Verlag, Berlin, 1976.

30. 0. AXELSSON, Linear AIgebru Appl. 29 (19801, 1.
31. D. M. YOUNG AND K. C. JEA, in “Large Scale Matrix Problems” Cf\. Bjiirck, R. J. Plemmons, and H.

Schneider, Eds.), North-Holland, New York, 1981.
32. D. P. O’LEARY, Linear Algebra Appl. 29 (1980), 293.
33. D. A. H. JACOBS, in “Sparse Matrices and their Uses” (1. S. Duff, Ed.), Academic Press, New York,

1981.
34. C. LANCZOS, J. Rex Natl. Bur. Standards 45 (19SO), 255.
35. C. LANCZOS, J. Res. Natl. Bur. Standards 49 (1952), 33.
36. H. A. VAN DER VORST, J. Comput. Phys. 44 (1981), 1.
37. A. JENNINGS AND G. M. MALIK, Intl. J. Numer. Methods Eng. 12 (1978), 141.
38. P. E. S. WORMER, F. VISSER, AND J. PALDUS, J. Comput. Phys. 48 (1982), 23.
39. T. A. MANTEUFFEL, in “Computing Methods in Applied Sciences and Engineering,” (R. Glowinski

and J. L. Lions. Ed.), North-Holland, Amsterdam, 1980.
40. D. S. KERSIIAW, J. Comput. Phys. 38 (1980), 114.
41. E. C. MORSE AND Z. MIKI&, Generation of hybrid field-reversed equilibria, in “Proceedings of the

Annual Controlled Fusion Sherwood Theory Meeting,” Santa Fe, N. M., 1982.
42. L. C. BERNARD, F. J. HELTON, AND R. W. MOORE, Comput. Phys. &ommun. 24 (1981). 377.
43. B. T. SMITH, J. M. BOYLE, J. J. DONGARRA, B. S. GARBOW, Y. IKEBE, V. C. KLEMA, AND C. B.

MOLER, in Lecture Notes in Computer Science Vol. 6, 2nd ed., Springer-Verlag, Berlin, 1976.
44. J. H. WILKINSON, “The Algebraic Eigenvalue Problem,” Oxford Univ. Press, London, 1965.
45. R. S. MARTIN AND J. H. WILKINSON, in “Handbook for Automatic Computation,” Vol. 2: Linear

Algebra (J. H. Wilkinson and C. Reinsch, Eds.), Springer-Verlag, Berlin, 1971.
46. 0. AXELSSON AND I. GUSTAFSSON, J. inst. Math. Appl. 23 (1979), 321.
47. 0. AXELSON AND N. MUNKSGAARD, IntE. J. Numer. Meth. Eng. 14 (1979), 1001.

