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The numerical stability analysis of compact toroidal plasmas using implicit time differencing 
requires the solution of a set of coupled. 2-dimensional, elliptic partial dtfferential equations 
for the field quantities at every timestep. When the equations are spatially finite-differenced 
and written in matrix form, the resulting matrix is large, sparse. complex, non-Hermitian, and 
indefinite. The use of the preconditioned bi-conjugate gradient method for solving these 
equations is drscussed. The effect of block-diagonal preconditioning and of incomplete block- 
LU preconditionmg on the convergence of the method is investigated. For typical matrices 
arising in our studies, the eigenvalue spectra of the original and preconditioned matrices are 
calculated as an illustration of the effectiveness of the preconditioning. We show that the 
preconditioned bi-conjugate gradient method converges more rapidly than the conjugate 
gradient method applied to the normal equations, and that it is an effective iterative method 
for the class of non-Hermitian, indefinite problems of interest. 0 1985 Academic press, IX 

I. INTRODUCTION 

The study of the low-frequency (wMo,,) stability of compact toroidal plasma 
equilibria requires the analysis of a hybrid particle-fluid model for plasma dynamics 
[l-3]. In the parameter regime of interest, which is characterized by high p, low 
aspect-ratio, and compact geometry, the ions in the plasma experience large 
variations in the fields over their gyration period. Typically, the ratio of the ion 
gyroradius to the plasma scale length is of the order of one tenth. An MHD 
stability analysis of such devices would not include these finite Larmor radius 
effects, and in cases of marginal stability or instability, the results would be incon- 
clusive. Examples of devices in which finite Larmor radius corrections are crucial to 
stability are field-reversed mirrors, O-pinches, and spheromaks. 

We include ion kinetic effects in our model by treating the ions as finite particles 
by standard particle-in-cell techniques. We assume that the electrons can be 
represented by a collisionless, inertialess fluid, and that the quasineutrality con- 
dition applies. Since the ion and electron temperatures can be comparable, we 
include a finite electron pressure, and we assume an adiabatic equation of state for 
the electrons. We also use the Darwin limit of Maxwell’s equations by neglecting 
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the transverse displacement current [4]. We perform a linear stability analysis by 
linearizing the equations about a given, self-consistent 2-dimensional (2D) axisym- 
metric equilibrium, and solving for the perturbed fields numerically for a given 
initial 3-dimensional (3D) perturbation, using finite difference methods in space and 
time, to detect any growing instabilities. 

Since the plasma is surrounded by a vacuum region which is included in the com- 
putation domain, it is necessary to introduce a minimum “cutoff’ density, so that if 
the density in any cell falls below this value, it is considered to be a vacuum cell. 
The value for the cutoff density is typically less than a few percent of the maximum 
plasma density. The appropriate plasma or vacuum equations are solved in each 
region automatically, without the need for boundary conditions at the 
plasma-vacuum interface. This allows for arbitrarily shaped vacuum regions [2, 51. 
Since the stability of the time-integration scheme depends on the size of the 
maximum Alfven speed in the plasma, the use of the cutoff density limits the Alvtn 
speed to a reasonable value. This assumption is justified because the quasineutral 
model is inappropriate for the low density region in any case. 

Due to the “stiff’ nature of the plasma dynamics equations, the Courant restric- 
tion on the timestep size [6] for a numerically stable explicit time-differencing 
scheme limits the applicability of plasma simulation codes. For example, studies of 
weakly growing instabilities (for which the growth rate is small compared to ti)<!) 
may require several thousand timesteps to simulate. This has prompted recent 
developments in the implicit time differencing of the plasma equations, which allow 
the use of a much larger timestep [7-lo]. The impracticality of a fully implicit 
algorithm for particle codes is due to the complicated relationship between the ion 
current and density as collected from all the particles and the fields E and B. The 
key to obtaining numerically stable algorithms at large timestep lies in making the 
time differencing as implicit as possible, while still retaining efficiency in the 
solution of the field equations and particle calculations. Here we wish to examine 
the efficient solution of the field equations that arise in an implementation of a par- 
tially implicit algorithm. We combine an implicit formulation of the field equations 
with a predictor-corrector iteration on the particle ion terms [ 1 ]. 

The implicit treatment of the field equations requires an efficient method for their 
solution at each predictor-corrector step, at every timestep. The equations, in 
matrix form, produce a sparse, complex, non-IIermitian, indefinite matrix. We dis- 
cuss the use of the preconditioned bi-conjugate gradient method for their solution. 
Our emphasis is on the efficient solution of the field equations, as a tool in the 
further development of implicit algorithms, rather than in the investigation of the 
merits of specific choices of implicit methods. These issues are discussed further in 
Section II. 

The plan for the rest of the paper is as follows: in Section II we present the model 
equations and the time differencing scheme used in getting the coupled set of elliptic 
partial differential equations for the field quantities. These equations are then dif- 
ferenced in space and written in matrix form. In Section III we present the bi-con- 
jugate gradient method for solving these matrix equations and in Section IV we dis- 
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cuss several preconditionings we have used for the method. Finally, in Section V we 
present some numerical results for the convergence of the bi-conjugate gradient 
method for various preconditionings. 

II. MODEL EQUATIONS 

Using the assumptions of the previous section, the electron momentum equation, 
the electron energy equation, and Maxwell’s equations, respectively, are 

0= -en.iE+~)-Vp,+llei7,(J,+J,), (1) 

($+u;V) (p2cy)=0, 

kB=F(J,+J,); 

VxE=-;;. (4) 

These equations are supplemented by the quasineutrality condition 

n, = n,, 

the relation between electron current and velocity 

J, = -en,u,, 

and the ion particle equations of motion, which give J, and n, from the fields E and 
B and the particle positions { rk, v~)~P. The assumption of quasineutrality and of 
vanishing longitudinal current density on the system boundaries justifies the neglect 
of the longitudinal displacement current in Eq. (3) [S]. Note that the electron 
momentum equation includes an ad hoc resistivity q, which is also included in the 
particle ion equations of motion for consistency. In the vacuum region, we solve 

V2E = 0. 

These equations are now linearized about an axisymmetric, self-consistent 
equilibrium specified by E” = 0, B”, Jp, Jz, np, pz, and particle quantities (rz, vz}p 
(which satisfy Eqs. (l)-(4) with a/at = 0). Representing the perturbed quantities as 
6E, 6B,..., we get 

6J xB” 
0= -enfdE+z+ 

J”x6B 
-A---V dp, + qenz(bJi + 6J,) + ye Sn,(Jp + Jz), (5) c C 
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a SP e= -y(Gp,v~u~+p~v~6u,)-u~~v6p,-6u;vp~, at 

V x 6B =: (6J, + 6J,), 

vxd*= A.asB 
c at ’ 

6J, = - e(nz &I, -I- 6~2,~~) 

in the plasma, and 

V2 6E=O, 

6p,=O 

in the vacuum, together with the linearized ion particle equations of motion [3]. 
Let us assume that the field quantities are known at timestep n, and that we 

desire them at timestep II + 1. We difference the above equations implicitly in time 
to second order accuracy. For example, Faraday’s law, Eq. (8) becomes 

vx SE”I;+6E”)= -;(“B”+‘-6B”). 
C At 

After differencing all the equations in this manner, and eliminating all the variables 
except 6E and 6p,, we get 

2~; 6E” + ’ +dtJ;xVx6E”+‘+ g(VxVxGE”+‘)xB’ 

c2 At 
+ 2V6p;+‘+-- 4n ~/~:VXVX~E~+~=W;+~+W” 

and 

+ (cAt)2~~v~.VxVx~E”+‘=S:‘+‘+S” 
-G--SF- 

(9) 

in the plasma, with the appropriate vacuum equations, where pf= en: is the ion 
charge density, and Ho =pznz-r is the electron entropy. The right-hand sides of 
Eqs. (9) and f 10) contain terms dependent on the particle ion quantities SJ; + r and 
6n; + l, which are grouped into W: + l and S: + l, and terms which only depend on 
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quantities defined at the previous timestep, which are grouped into W” and S”. 
Note that Eqs. (9) and (10) can symbolically be written as 

f,@E”+‘, bp:+‘)= W,(GE”+‘)+ W”, (11) 

f,(6E” + I, Sp: + ‘) = S,(dE” + ‘) + S”, (12) 

where f, and f, are linear partial differential operators in the spatial variables. Note 
that if Eqs. (11) and (12) could be solved for 6E”+ ’ and 6p;+ 1 as they stand, the 
resulting time differencing scheme would be fully implicit, and hence uncon- 
ditionally stable, since the equations are linear (assuming that the particle 
equations were integrated implicitly). However, it is apparent that this is only a for- 
mal expression for i?E”+ ’ and Spz + ‘, since the terms W, and S, depend on 6E”+’ 
through the positions and velocities of all the particles. The solution to Eqs. (11) 
and (12) for 6;E”” and 6p:+’ is thus performed in a predictor-corrector fashion. 
Let m denote the predictor-corrector iteration number; then, 

WK~:, d~:~+++:) = W,(dE;+ ‘) + W”, 

f#E”,;‘, , Jp:m++:) = S,(GE”,+ ‘) + S 

(13) 

(14) 

are used to solve for 6E;:‘, and 6pz:+: from 6E>+’ and 6~:: ‘. Starting from 
6E;;+ i = 6E” (and similarly for dp,), we solve Eqs. (13) and (14) for 6E;+ ‘; we then 
use this to update W, and S,, and to solve for 6E;+ i, etc. This is performed as 
many times as necessary. In practice, only one predictor and one corrector step are 
used. Note that correcting W,(6E;z+1) involves pushing all the particles with field 
SE;+ l and the corresponding 6B. The solution of Eqs. (13) and (14) for 6E;z1, and 
SP zM++: involves the inversion of the spatial difference operators f, and fP. This is the 
topic to which the remainder of this paper is devoted. 

We remark that the overall numerical stability of the algorithm depends on how 
much of the dependence of Wj and S, on 6E”+’ is brought to the left side of 
Eqs. (13) and (14) in the predictor-corrector solution of Eqs. (11) and (12). Note 
that it is possible to treat much of the dependence of 6J, and &, on 6En+ 1 
implicitly using techniques of the direct implicit method [7], or of the implicit 
moment method [S-lo], thereby achieving stability at larger timestep. Such techni- 
ques would change the operators f, andf, of Eqs. (13) and (14) to operators which 
are less local [7]. Thus, the solution method for the inversion of f, and f, should 
not depend critically on the details of the operators so as not to preclude a more 
implicit future formulation. In the present implementation, we observe that the 
algorithm is stable at larger timestep than is the explicit version. We have suc- 
cessfully used the code with a timestep large enough to exceed the Alfven speed 
Courant condition by a factor of 334, while still retaining numerical stability [ 111. 
The limits on the timestep for this algorithm are discussed elsewhere [12]. 
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Spatial Differencing and Matrix Representation 

Since our equilibrium is axisymmetric, it is possible to Fourier-analyze the per- 
turbation in the 8 coordinate, 

6E(r, 8, z, t) = Re(GE(r, z, t) e”‘}, 

where 6E(r, 8, z, t) is the “physical” electric field, and 6E(r, z, t) is a complex lode 
quantity (in differenced form). Since our equations are linear in the perturbation, 
different toroidal mode numbers 1 do not couple, so that each I can be studied 
separately [3]. With the above detinition, Eqs. (9) and (10) become four coupled 2- 
dimensional partial differential equations in four complex fields 6E,.(u, z), 6E,. bE,, 
and 6p, at every timestep. 

Using standard finite-difference techniques, we form a uniform mesh in the [r, I) 
domain 

with NZ mesh points in the z direction and NR mesh points in the r direction. Since 
storage considerations limit us to relatively coarse meshes, it is essential to use cen- 
tered finite differences to achieve second-order accuracy in the spatial discretization. 
Equations (9) and (LO) become a set of finite-difference equations, which can be 
written in matrix form as 

Ax=b, 

where the unknown vector x is 

N = NZ x NR is the total number of mesh points, and 6E: is the value of 6E, at the 
kth mesh point. Note that the timestep index is now implicit. The right-hand side 
vector b is the right-hand side of Eqs. (9) and (lo), similarly discretized. Thus, 
Eqs. (13) and (14) become, in matrix notation, 

Ax m+l =b,. (15) 

where the dependence of b on the solution to the previous predictor-corrector step 
x, has been indicated. The matrix A is a complex banded matrix with 9 block- 
diagonals; each block is a 4 x 4 matrix, and expresses the linkage of the four 
variables at each mesh point. In the case when periodic boundary conditions are 
used in the z direction, the matrix A has additional elements at points 
corresponding to the z boundaries [ 131. Equations (9) and (10) are written so that 
the diagonal of the matrix is proportional to (Ax)‘, while the various off-diagonal 
terms are proportional to At, At Ax, Ax, and (At)2/Ax. Thus the matrix tends to be 
less diagonally dominant when the timestep is large or when the mesh is tine. 
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III. THE BI-CONJUGATE GRADIENT METHOD 

Choice of Solution Method 

In solving Eq. (1.5) we require a solution method which is sufficiently fast to per- 
mit a time dependent simulation, subject to computer memory limits. For a typical 
simulation of 1000 timesteps, with two predictor-corrector steps per timestep and a 
requirement that each run use about 1 hour of CPU time, half of which is for par- 
ticle pushing, the field solve time would be limited to about Is/field solve. This 
places a stringent requirement on the rapidity of the field solver and is one of the 
major penalties of an implicit algorithm. However, usually the advantage gained 
through enhanced numerical stability more than overcomes this. For a spatial mesh 
of 50 x 50 points, the complex matrix A has dimension 10,000. Considering that we 
wish to conserve as much core memory as possible for particle quantities and fields, 
it is evident that it is impractical to store the non-zero elements of A explicitly 
(720,000 words of memory would be required to store A in this case). The use of a 
direct method of solution is also inefficient for such a problem. Even though the 
matrix would only have to be factored once (since the matrix does not change from 
timestep to timestep), it would be necessary to store the factors externally on disk. 
The I/O time in reading the matrix factors several times per timestep would be 
prohibitive. (For example, for the above mesh, Gaussian elimination with partial 
pivoting would produce matrix factors requiring about 12.5 million words of 
storage.) Thus we require a fast iterative method which generates the elements of A 
at each iteration; that is, the operation Ax is given as a rule for generating the vec- 
tor Ax given the vector x, and not as an explicit matrix-vector multiply. 

In making the choice of iterative method, we have to consider any special proper- 
ties of A which may be exploited, such as symmetry, definiteness, diagonal 
dominance, sparsity, and the nature of the eigenvalue spectrum of A. Additional 
considerations involved are the memory requirements of the algorithm, the vec- 
torization possibilities, and the complexity of coding necessary to implement the 
method. The sparse matrix A in Eq. (15) is a complex, non-Hermitian, indefinite 
matrix, which is not diagonally dominant. The absence of diagonal dominance is 
due to the large variation of pp in Eqs. (9) and (10) in going grom the plasma 
region to the vacuum region (typicahy by a factor of ~100). Given these proper- 
ties, many of the traditional iterative methods are not applicable. For example, the 
a priori convergence of SOR with absence of diagonal dominance cannot be 
assured [ 141. The equations could have been written in a form suitable for solution 
by AD1 [6,2]: 

ac?E 
- = f,(dE, +,I, at 
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However, the cross-derivative terms (arising from the V x V x operator) cannot be 
treated easily to second-order accuracy in space and time. Also, the absence of 
diagonal dominance could lead to ill-conditioning of the tridiagonal matrices 
involved in the AD1 solution. The Tchebychev iterative method [ 15 J cannot be 
used because the matrix A generally may have eigenvalues in both halves of the 
complex plane. 

We have chosen to use the bi-conjugate gradient method, a variant of the con- 
jugate gradient method which is applicable to nonsymmetric matrices. The method 
is highly vectorizable and does not require any parameters to achieve convergence. 

The Preconditioned Conjugate Gradient Method 

Due to the similarity of the bi-conjugate gradient (BCG) and conjugate gradient 
(CG) methods, we first briefly discuss basic CG method and the role of precon- 
ditioning. The theory of the CG method is well known, and is discussed in the 
classical references [16-211. The CC method is presently regarded as an iterative 
method for the solution of the linear system 

Ax=b 

characterized by a symmetric, positive-definite matrix A. At the ith step, the 
estimate of the solution x, is improved from a vector in the subspace 

“%$= Span{r,, Ar,, A’r, ,..., A’ro}, 

where r0 = b -Ax, is the initial residual and x,, is the initial guess to the solution. 
The method produces parameters which minimize the quantity lle,lj i = (e,, Ae,), 
where ei= x - xi is the error at step i, and (x, v) is the inner product xTv, by 
generating polynomials which are small on the spectrum of A. At step i of the 
iteration, the closeness of the approximation x, to the solution x depends on how 
well a polynomial of degree i can be chosen to be small on the spectrum of A. This 
depends on the condition number of A and the extent of “clustering” of the eigen- 
values of A. The condition number rc(A) of A is defined as 

which, in the case of a symmetric, positive-definite matrix reduces to the spectral 
condition number 

Lx(A 1 
IctA)= &,,(A)’ 

where /z are the eigenvalues of A. When K(A) is large (A is “ill-conditioned”) then 
the polynomial which is small on the spectrum will be of high degree, and con- 
vergence is poor. On the other hand, if the eigenvalues of A are clustered, then it is 
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possible to find a low degree polynomial which is small on the spectrum, giving 
rapid convergence [18, 22, 231. 

Matrices arising from the finite differencing of partial differential equations tend 
to have a continuous distribution of eigenvalues, so that the basic CG method is 
not ideally suited to their inversion. Thus there is a need to develop effective 
preconditionings of the matrix A to enhance the rate of convergence of the CG 
method. From the above considerations, the goal of preconditioning is to transform 
the original set 

Ax=b 

into an equivalent set 

My=c 

such that x can be recovered easily from y, and such that the matrix A4 has a more 
favorable spectrum. Specifically, we desire that K(M)~K(A) and that the eigen- 
values of M are more clustered than those of A. The present philosophy in precon- 
ditioning, in achieving these objectives, is to multiply the set Ax = b by A”, an 
approximate inverse of A, so that 

A”Ax = A”b 

or 

Mx=c, 

where M = JA and c = A”b. Thus, M will be an approximate unit matrix, so that 
K(M)= 1 and there will be a substantial amount of eigenvalue clustering of M. The 
application of the CG method to M would produce rapid convergence. The matrix 
A” would be chosen to maintain the sparsity of the iteration matrix. Thus, precon- 
ditioning is a compromise between maintaining sparsity and getting the best 
approximate inverse of A. When viewed in this framework, the CG method with 
preconditioning spans the gap between direct and iterative methods. 

The Bi-Conjugate Gradient Method 

The basic CG method is only applicable to symmetric, positive-definite matrices. 
In the past, it has been extended to nonsymmetric matrices by applying the CG 
method to the normal equations [19,24] 

ATAx= ATb 

or 

Mx=c, (16) 

where M= A*A and c = A*b. Clearly, M is a symmetric, positive-definite matrix, so 
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that the CG method can now be used on Eq. (16). The disadvantage of using the 
above approach is that the condition number of the matrix M is the square of the 
condition number of A: 

K(M) = 7c(ATA) = K”(A). 

Also, the spectrum of A4 is generally more spread out than that of A. In addition, 
the solution is now improved from vectors in the space 

K= Span(ATr,, A’(&*) rO, AT(AAT)2 ro,..., A*(AA*)’ ro), 

which is numerically more difficult to resolve into orthogonal vectors than is ?;, 
especially when K(A) is large. Since the CG method would be applied to the 
preconditioned system, it might seem that the formation of the normal equations 
would not reduce the convergence rate substantially, since the matrix would now be 
well conditioned. However, in Section V we present some numerical results which 
show that even though the preconditioned matrix is very close to the unit matrix, 
the product ATA has a large condition number, and the CG method, as applied to 
the normal equations, converges poorly. 

The extension of the CG method to nonsymmetric, indefinite systems is not 
trivial. Wowever, there is a need for a method which can be used on such systems 
directly. In the context of conjugate gradients, the search is for a method which 
improves the solution from the space KY;, which has a minimization property in 
some norm of the error, and which satisfies a simple recurrence relation for 
updating residual and search vectors. A method which possesses all of these proper- 
ties is not available yet, although partial generalizations have been made. Fletcher 
[25] and Paige and Saunders [26] have generalized the CG method to a sym- 
metric, indefinite matrix, with an appropriate minimization property. Widlund [27] 
and Concus and Golub [28] have developed a generalization to nonsymmetric 
matrices with a positive-definite symmetric part, and their algorithms require that 
this symmetric part of the matrix be easily invertible. Axelsson [29, 301 also dis- 
cusses the formalism for the conjugate gradient method for nonsymmetric matrices, 
but restricts his attention to matrices with a positive-definite symmetric part. 
teuffel [15] has proposed a Tchebychev iterative procedure for a nonsymmetric 
matrix with complex eigenvalues which can be enclosed in an ellipse in the right (or 
left) half complex plane. Finally, recently there has been a generalization of the con- 
jugate gradient method applicable to nonsymmetric and indefinite matrices by 
Young and Jea [31], with an appropriate minimization property, but the method 
requires the storage of all the previous search vectors. A truncated version of this 
algorithm has been proposed; however, the possibility of breakdown of the trun- 
cated algorithm still exists. 

We have chosen the bi-conjugate gradient method as proposed by Fletcher [25]. 
The BCG method is also discussed by O’Leary [32] and Jacobs [33]. This method 
is based on the Lanczos [34, 351 method for tridiagonalization of nonsymmetric 
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matrices. The BCG method is a gradient method, although it does not have a 
minimization property as does the basic CG method. Thus, in general, the 
monotonic decay of the error is not guaranteed and the possibility of breakdown or 
instability exists. However, the method is a very powerful iterative scheme for non- 
symmetric, indefinite systems when used judiciously. Our experience with the 
problems arising here shows that the BCG method, when applied to a well-precon- 
ditioned problem, converges rapidly, even though it does not possess a strict 
minimization property. The numberical results in Section V support these 
statements. Our numerical tests have shown that the BCG method is better than 
the CG method applied to the normal equations. We did not experience any 
problems with breakdown of the preconditioned BCG algorithm in solving the 
matrix problem generated by Eqs. (9) and (10) in a wide parameter range. 

Jacobs [33] has extended the BCG method to complex sets of equations. Of 
course, it is possible to write the complex set into an equivalent set of real 
equations of twice the dimension, but as Jacobs points out, and in our experience, it 
is more efficient to apply the complex BCG algorithm to the original equations, 
since there is usually a strong coupling between real and imaginary parts of the 
variables. 

The BCG algorithm is applied as follows [33]: Starting with a guess vector x0, 
we define r0 = b - ,4x0, r0 = r$ , p0 = rO, and PO = p$ . For i = 0, 1,2 ,..., 

(F,, r,) 
“= (p,9 Api)’ 

X 1+1 = xi f cljply 

(174 

(17b) 

r,+l = rI - QP,, (17c) 

r;,+ 1 =r,-a,*AHj5,, (17d) 

P I+l=PiPi+rL+13 (170 

Pi+ 1 =P,*Pifr,+l, (1%) 

where AH is the complex-conjugate transpose of A, and (x, y) is now x”~. Note 
that two additional vectors are needed compared to the CG method. The amount 
of work per iteration is only slightly greater than that required for the CG method 
applied to the normal equations. However, the solution is still updated from the 
space K. Note that when the matrix is symmetric and positive-definite, the BCG 
method reduces to the basic CG method. 
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IV. FRECONDITIONINGS USED 

The ultimate success of the BCG method will depend on the quality of the 
preconditioning. In choosing a preconditioning, the nature of the use of the solver 
should be considered, In our case, since the elements of the matrix A depend on 
time-independent equilibrium fields and the system (15) is solved for many rigbt- 
hand sides with the same A, it is prudent to maximize the convergence rate of the 
BCG method by constructing a fairly elaborate preconditioning, since it is perfor- 
med only once, while at the same time keeping the number of operations per 
iteration small. The types of preconditionings currently used include: precondition- 
ing by an incomplete LU decomposition [21, 19, 36, 131, simple diagonal scaling 
[37, 381, preconditioning with several sweeps of SSOR [23, 241, preconditioning 
with a part of the matrix representing a reduced portion of the differential operator 
which is easily invertible [36,20-J, and preconditioning with the symmetric part sf 
the matrix [20,27, 291. 

We will present two classes of preconditioning which we have used successfully in 
solving Eq. (15). Since our matrix represents the simultaneous solution of four 
equations, we generalize the above-mentioned ideas by applying block-diagonal 
scaling and incomplete block-LU decomposition. First, it is necessary to scale the 
four equations with respect to each other. Namely, we scale the matrix A by 
columns so that the elements corresponding to the different equations are of the 
same order of magnitude. We consider our unknown vector x to consist of the 
variables (6E, @JCL), where p is a scaling constant. This scales the columns of A 
which correspond to the 6p, equation by the factor p. The constant fl is chosen to 
make the elements of the vector x corresponding to 6E and 6p, have the same order 
of magnitude. From an examination of Eqs. (9) and (lo), we set 

where u, is the electron sound speed, vA is the Alfven speed, o,~ is the ion cyclotron 
frequency, and L, is the scale length for variation of equilibrium fields. The values 
used above are averages over the plasma. Note that this scaling is not applied 
explicitly, but is incorporated into the definition of the modified matrix A. 

We now establish some notation. We define a partitioning of the matrix A into 
NB square blocks, each of dimension k, such that NB x k = dim(A) = N. Let A, be 
the resulting block matrices in A, with i, j = 1, 2,..., NB. Let D be a block-diagonal 
matrix with NB diagonal blocks D,, each of dimension k. Let the matrices L and U 
be block lower triangular and block upper triangular matrices respectively, with the 
same block structure as A. 

1. Block Diagonal Scaling 

We rewrite the set 

Ax=b 
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as 

AD-‘Dx= b, (19) 

where D = block-diag(A). We assume that each of the blocks A, is non-singular. 
This will be the case for matrices arising from properly differenced partial differen- 
tial equations for a proper choice of partitioning. Thus, D, = A,, for i = 1,2,..., NB. 
Writing Eq. (19) as 

My=b, (20) 

where M= AD-’ and y = Dx, we implicitly apply the BCG algorithm to Eq. (20). 
If the matrix A is block-diagonally dominant, then 

A=D+A, 

with Il.4 I/ < 11011, and the matrix 

M=AD-‘=I+AD-’ 

will be an approximate unit matrix. The motivation behind applying block diagonal 
preconditioning (k > 1 ), as opposed to simple diagonal preconditioning (k = 1 ), is 
that frequently even though A does not tend to be simply diagonally dominant 
(loosely speaking), it may be block-diagonally dominant. In the case of Eqs. (9) and 
(lo), for the choice k= 4 each block A, of A expresses the linkage of the four 
variables 6E,, 6E,, 6EZ, and 6p, at each mesh point. Since there is no reason to 
expect that one variable in each equation will be dominant over the others 
throughout the region, A will not be simply diagonally dominant. However, for a 
choice of parameters which tends to make the matrix diagonally dominant, there is 
more likelihood of block-diagonal dominance than of simple diagonal dominance. 

When BCG is applied to (20), the extra work per iteration is one multiplication 
of the form D-lx and another of the form DPHx over the unpreconditioned ver- 
sion. For small k this extra work is negligible. Since D is block-diagonal, D - ’ is 
found once and for all by inversion of NB (k x k) matrices by Gaussian elimination. 
The algorithm can be arranged in a form which only requires the knowledge of 
D-l; the actual algorithm will not be given, since it is a special case of the next sec- 
tion. The additional storage required for the preconditioned algorithm is the 
storage for D-‘, which has kN (complex) elements. 

2. Incomplete Block-LU Decomposition 

This preconditioning involves writing A as 

A=LD-‘U+E. (21) 

Our intention is to obtain as complete a decomposition of A into L, D, and U as 
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possible (i.e., to minimize E), while still maintaining spar&y in the factors L and hi, 
Then we can precondition the system (18) as 

DL-‘AVIUx= DL-‘b, 

or 
My=c, 

where M=DL-‘AU-‘, y= Ux, and c=DL-lb. Thus, 

M=l+ DL-‘EU-“. 

If l\Eli is small, then M will again be close to the unit matrix. It has been found that 
this preconditioning (in the case of simple, not block, factorization) may reduce the 
condition number of the matrix operator, and signilieantly clusters its spectrum 
[21, 19, 36, 131. We intend to enhance this effect by using block preconditioning. 

In order to economize on storage, we choose to maintain the same sparsity pat- 
tern in L and U as in A, and further, we restrict the off-block-diagonal elements of 
L and U to be identical to the corresponding lower and upper block-triangular 
parts of A, respectively. Also, we define 

block-diag( L) = D, 

block-diag( U) = D. 
(231 

Thus, no additional storage is needed for the factors L and U, but only for D, and 
the storage requirements are the same as above. 

It is now necessary to choose D. If A were block-diagonally dominant, it would 
be natural to choose D such that E would have zero elements along its block 
diagonal. Thus we find D such that 

block-diag( LD - r U) = block-diag (A ). (24) 

With the above definitions, it is easy to verify that the blocks D, can be recursively 
found from 

1-l 

Di=A,- c A,,D,‘A,, 
iI=1 

for i = 1, 2 ,..., NB. 
The use of (24) and the restriction imposed above on the off-block-diagonal 

elements of L and U forces agreement between A and LD-“U only on the biock- 
diagonal and on the outermost block-diagonal bands. This prescription is similar to 
that used in [36] (for the k = 1 case), except that LD-‘U in [36] agrees with A at 
all positions at which A is non-zero, since A is 5-diagonal there. It is possible to use 
a more general incomplete decomposition which forces agreement of A and LD- i hi 

581/61/l-12 
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at each position at which A has non-zero block elements, as in [21, 13, 191. This 
restriction is only used for the purpose of conserving storage. Forcing agreement 
between each additional block-diagonal of A and LD-lU requires additional 
storage for bands in the factors L and U, each block-diagonal requiring the 
equivalent of 2k2 meshes. Thus, the present strategy requires minimal additional 
storage for the preconditioning, and is appropriate when the matrix is sufficiently 
block-diagonally dominant. In practice, it works adequately for the present pur- 
poses. However, in future applications, with possibly larger timestep, in which the 
matrix may be less block-diagonally dominant, we may readily generalize the 
preconditioning to include agreement between more block-diagonals of A and 
LD-‘U, thereby improving the preconditioning at the expense of increased storage 
requirements. 

The BCG algorithm (17) is applied implicitly to Eq. (22), yielding, after some 
rearrangement, for i = 0, 1, 2 ,..., 

(264 

X 1+1 = x, + a, u- ‘p,, G-1 

Y 1+1 = rl - a,DL-‘AV’p,, (26~) 

YI+,=Fi-cgpi, (26d) 

p,= tyz+-l, li+l) 
(rr, r,) ’ 

(264 

Pi+ 1 =PiPl+ri+l, 

P z+l =B,*pi+ U-HAWL-HDHyi+l, 

Wf) 

G’W 

with r,, = DL-‘(b - Axe), Y0 = r,*, p. = ro, and PO = WHAHLpHDHFo. The 
algorithm is implemented as follows. The matrix D-’ is stored rather than D. In 
calculating D by Eq. (25), we first find D,, which is inverted using Gaussian 
elimination to get D,‘; this is then stored and used in finding D,, 1. Once D-’ is 
known, we can use routines which form the product of DL-‘, DU-‘, LpHDH, and 
UwHDH with any vector, using standard back-substitution and forward-elimination. 
Due to Eq. (23), these “multiplications” do not require knowledge of D, but only of 
D-l. The algorithm for the block-diagonal scaling preconditioning can be obtained 
as a special case of Eq. (26) by setting L + I, D -+ I, and U -+ D, where I is the unit 
matrix. 

It may seem that the workload per iteration has been doubled over the unprecon- 
ditioned version. Each iteration now requires the products of the matrices 
(DL-‘) AD-l(DU-‘) and ( UpHDH) DmHAH(Lp HDH) with a vector. However, 
with the preconditionings defined in this section, with the restrictions on L and U, 
we can use a technique due to Eisenstat, reported in [36], to perform the above 
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operations with essentially the same effort as required to form the original products 
of A and AH times a vector; see Appendix A. 

Note that there is a possibility of ill-conditioning of the factors L and U. The 
choice of block-diagonal of L and U (23) was made to prevent this from occur& 
since if A tends to be block-diagonally dominant this choice will make L and U 
well-conditioned. In the case of ill-conditioning it is possible to stabilize the precon- 
ditioning by assuring block-diagonal dominance in L and U, or by preconditioning 
(A + D block-diag(rl)) with cr chosen large enough [36, 393. It is also possible to 
extend the suggestions of Kershaw [40] to the block-diagonal case. Instability in 
these factors is an indication that A is not block-diagonally dominant with this 
choice of block size. Since our preconditioning is based on the block-diagonal 
dominance of A, the preconditioning produced in these unstable cases would be 
poor, and an increase in block size would be the best way of “stabilizing” these fac- 
tors. In practice it was not necessary to apply any of the above stabilizations except 
for the increase in block size. 

The natural choice of the block size seems to be k = 4 in our case due to the four 
coupled equations. In fact we have only implemented the above preconditionings 
with k = 1 and k = 4. It is interesting to note that with k = IV, corresponding to one 
block, both of the preconditionings reduce the matrix A to the unit matrix, 
corresponding to a complete decomposition, and convergence is achieved in one 
iteration. Of course, this choice requires the evaluation of A - ‘, so that it is imprac- 
tical. However, as we increase k we expect M to be increasingly closer to the unit 
matrix, increasing the convergence rate of the BCG method. The optimum choice of 
k thus becomes a compromise between storage requirements and the extent of 
preconditioning. 

The preconditionings available to us, in order of increasing effectiveness, are: 

(a) diagonal scaling with k = 1, 
(b) block diagonal scaling with k = 4, 

(c) LU decomposition with k= 1, 

(d) block-LU decomposition with k=4. 

The above order also indicates the cost per iteration. From our previous comments, 
it seems that (c) and (d) require almost the same operation count per iteration as 
does the unpreconditioned algorithm. This is true; however, since we are using a 
vector computer (Cray l), it turns out that the preconditioned algorithm is indeed 
significantly slower in CPU time per iteration, because of the recursive nature of the 
products DL- ‘, etc. This has to be kept in mind when choosing the precon- 
ditioning. In general, it has been our experience that the choice is problem depen- 
dent. We have treated cases in which the choice (b) led to a larger number of 
iterations than did (d) but with a smaller total CPU time. 

A note on the computational implementation of the problem is in order here. The 
coding involved in generating Ax was simple even though the matrix A was not 
explicitly stored in memory. However, the coding to generate products of An, 



170 MIKIk AND MORSE 

DL-‘, DU-‘, and especially of VHDH and L-HDH with a vector, and the deter- 
mination of D using (25) were involved. These problems would have been eased if 
the elements of A could be explicitly stored in core memory. With the advent of 
large memory computers, it seems that the practical implementation of similar 
algorithms will be greatly simplified. Nevertheless, our algorithm is vectorizable to 
a large extent (and fully in cases (a) and (b)), which makes it an attractive method 
on present vector computers. 

V. NUMERICAL TESTS 

We discuss four matrix examples associated with two typical plasma equilibria 
for the spheromak device. The equilibria are obtained by numerically solving the 
zero-order equations from Section II for a rigid-rotor ion distribution function 
[41]. The first three examples are based on a high p equilibrium, with comparable 
ion and electron currents and temperatures. For a choice of cutoff density equal to 
0.5% of the maximum plasma density, the whole mesh turns out to belong to the 
“plasma” region, so that the first three examples do not have a vacuum region. The 
first three examples are generated by discretizing this equilibrium on successively 
liner meshes. We use a 12 x 12 mesh for Example 1, a 22 x 22 mesh for Example 2, 
and a 42 x 42 mesh for Example 3. (Note that two mesh points are used for boun- 
dary points, so that the above examples correspond to successively halving the 
mesh size.) The timestep is the same for all three examples, and is chosen so that 
the maximum value of vA At/Ar = 0.48 for Example 1, where vA is the Alfvkn speed, 
and Ar = AZ. We choose the I = 3 mode, with periodic boundaries in z, and we Con- 
sider q = 0. Example 4 is derived from a low /? equilibrium, which was used to suc- 
cessfully test the code for an Z= 1 tilt instability in the spheromak against the 6 W 
MHD code GATO [42], in a parameter regime in which ion kinetic effects were 
not expected to be important [ll]. This example uses a 26 x 50 (Y, z) mesh, with 
Ar = AZ, with a timestep chosen so that the maximum value of vA At/Ar = 2.9. 
Metallic boundaries surround the plasma, and q = 0. The cutoff density is chosen to 
be 5% of the maximum plasma density, so that about 23% of the mesh belongs to 
the vacuum region. This example represents a typical collection of parameters, and 
the matrix generated should be regarded as most representative of the problems of 
interest here. 

As discussed in Section II, the matrix A is generated from the equilibrium fields. 
In this section, we shall use M to denote the preconditioned matrix corresponding 
to the most effective preconditioning, incomplete block-LU decomposition with 
k = 4. The various methods of solution of Ax = b were compared in the following 
way. For an exact solution of 

x=[l+i, l+i, l+i ,..., l+ilT, 

the right-hand side vector b was found from b = Ax. The system was then solved 
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using each of the methods below to lind the solution x. This process enabled us to 
compare the actual error norm at iteration step i, 

for the various methods. The methods were initialized with the same randomly 
chosen initial guess x0. The stopping criterion used was: 

e(l) 
stop when - < E, (p 

with E = 1W9. 

Eigenvalue Calculations 

In analyzing the effects of preconditioning, it is instructive to look at the spectra 
of the original and preconditioned matrices. For Example 1, which produces a small 
matrix, we used standard EISPACK [43] routines to get the complete spectra of A, 
M, AHA, MHM, and the Hermitian part of A. For Examples 224, we used the 
power method and the inverse power method, with optional shifts [44], to find the 
extreme and some isolated eigenvalues of the larger matrices produced. The inverse 
power method on these large problems was implemented by using out-of-core 
Gaussian elimination with partial pivoting to factor the matrices [45]. Consequent- 
ly, these calculations were very time consuming, especially in I/O time. Using these 
procedures, we were able to find the maximum and minimum eigenvalues of AHA 

TABLE I 

Summary of Spectral Information for Examples 1-4 

Mesh size and 
Example (Matrix dimen- 

sion) 

a a nun> max 
of Hermitian 
part of matrix Condition number 

I(M) furthest 
A M from 1 + 0~ GA) K(M) 

1 12 x 12 - 1.88, - 1.78, 0.8cM.04i 1.51 x 10” 3.36 x !O’ 
(576) 25.1 3.80 

2 22x22 - 2.47, 10.1, 1.44 0.w + 5.42 x lo2 5.91 x 10’ 
(1936) 6.82 12.1 

3 42x42 - 2.75, - 52.7, 0.28 - 0.041 3.26 x lo4 2.24 x lo4 
(7056) 3.02 54.1 

4 26 x 50 -0.798, - 2.69, 0.15 -0.03i 2.23 x lo3 2.14 x IO* 
(52W 1.21 4.46 
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and MHM, and hence the condition numbers of A and M, the eigenvaiue furthest 
from 1+ Oi for M, and to find the maximum and minimum eigenvalues of the Her- 
mitian parts of A and M. These results are summarized in Table I. Note that we 
could determine whether the Hermitian parts of A and M were definite by examin- 
ing whether their maximum and minimum eigenvalues had different signs. The 
spectrum computations for the large matrices are computationally difficult; 
however, we were able to obtain sufficient information to analyze the effect of 
preconditioning. 

EXAMPLE 1. This example produces a matrix of dimension 576. This coarse- 
mesh problem is used to exhaustively discuss the preconditioning and convergence 
of the BCG method with reference to the eigenvalue spectra of the original and 
preconditioned matrices, due to the ease of computation of the spectrum for a small 
problem. The matrix A in this case has a large degree of diagonal dominance 
because the diagonal is proportional to (dr dz), leading to a well-conditioned 
matrix. Figure 1 shows the location of the eigenvalues of A in the complex plane, 
while Fig. 2 shows the eigenvalues of the matrix M. Also shown in Figs. 1 and 2 are 
the optimal ellipses which enclose the spectra of A and M. These ellipses are 
obtained from the theory of the nonsymmetric Tchebychev iterative method and 
will be referred to later in this section. Note that the eigenvalues of M are tightly 
clustered about the point 1 + Oi so that the preconditioned matrix M is indeed 
“close” to the unit matrix, showing that incomplete block-LU decomposition 
preconditioning is effective. Note from Table I that the matrix in this example is 
representative of the problems of interest, since A is indefinite (its Hermitian part 
has 74 negative and 502 positive eigenvalues) and is substantially non-Hermitian 
(Fig. l), although the matrix is more diagonally dominant than usual. 

8 

0 4 8 12 16 20 24 

REAL 

FIG. 1. Location of the eigenvalues of the unpreconditioned matrix A in the complex plane and the 
optimal ellipse enclosing the spectrum for Example 1. 
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-0.11 
0.8 0.9 I.0 I.1 I.2 

REAL 

FIG. 2. Location of the eigenvalues of the preconditioned matrix M in the complex plane and the 
optimal ellipse enclosing the spectrum for Example 1. 

Figure 3 shows the value of the error norm e(‘) versus the iteration number i for 
the various preconditionings when the BCG method was applied to Example 1. 
These results show that the convergence of the BCG method improves as we 
increase the block size from k = 1 to k = 4, and as we go from the diagonal scaling 
preconditioning to the incomplete LU decomposition preconditioning, as expected. 
Table II shows the timing information and the number of iterations necessary for 
convergence for the various preconditionings for this example. Note that the 
preconditioning time is not relevant for comparison of the preconditionings, since 
in our applications only one preconditioning is necessary for solution with many 
right-hand side vectors b. The total CPU iteration time is about the same for both 
block-diagonal scaling and incomplete block-LU decomposition preconditionings 
(with k=4), even though the number of iterations is different. Thus, since the 

Id I- 1 ’ ’ ’ ’ ’ ’ ’ ’ ’ I ’ ’ ’ 
0 20 40 60 80 100 120 140 

ITERATION i 

FIG. 3. Plots of the error norm e(l) versus iteration number i, corresponding to the various precon- 
ditionings for the BCG method on Example 1. The plots corresponding to the different preconditionings 
are: A is for simple diagonal scaling (k = 1); B is for block diagonal scaling (k =4); C is for simple 
incomplete LU decomposition (k = 1); D is for incomplete block-LU decomposition (k = 4). 
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TABLE II 

Timing Information for the BCG Method on Example 1 

Preconditioning 

type 

No. of iterations Total CPU Time used 
CPU time per needed to achieve iteration 
iteration (ms) x!!L< 10-g 

for pre- 

.(O) ’ cost (s) conditioning (ms) 

No preconditioning 6.0 159 0.954 0 

Simple diagonal 
scaling (k = 1) 6.1 46 0.280 0.39 

Block diagonal 
scaling (k = 4) 6.9 26 0.179 1.9 

Simple LU 
decomposition (k = 1) 14.6 15 0.219 17 

Block LU 
decomposition (k = 4) 17.4 10 0.174 23 

criterion for choice of preconditioning is the minimization of CPU time, the choice 
of most effective preconditioning is not always the most desirable. 

Figure 4 compares the convergence of the BCG method with that the CG 
method as applied to the normal equations written in real variables. Two versions 
of the CG method are used: on is due to Kershaw [19], and it minimizes the 
Euclidean norm of the error I/x-x~\[~, while the other is due to Hestenes and 
Stiefel [16], and it minimizes the Euclidian norm of the residual lIA(x, - x)llz. 

ITERATION i 

FIG. 4. Plot of the error norm e(‘) versus iteration number i, corresponding to the most effective 
preconditioning for the BCG method and the two (normal-equation) CG versions on Example 1. 
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(This is true for the unpreconditioned versions only; for the preconditioning used 
here, the quantities minimized are I/ U(x - xi)11 2 and IIDL-‘A(x - x,)[/ *, respec- 
tively.) These two versions are denoted by CG(MINERR) and CG(MINRES), 
respectively. Both versions seem to perform similarly, although there is a slightly 
smoother error reduction for the latter version. All methods are applied to the 
preconditioned matrix M for the most effective preconditioning. Note from Fig. 4 
that the BCG method only required 10 iterations to converge, while both CG 
methods required 85. This figure indicates that CG performs poorly on this exam- 
ple, even though the eigenvalues of M, as shown in Fig. 2, are clustered about 
1 + Oi. This is because the matrix MHn,i, which is used in the Krylov sequence for 
the CG method as applied to the normal equations, does not have a spectrum that 
is as clustered. Figure 5 shows the distribution of the eigenvalues of &PM. 
(Actually, the matrix M is converted to a real matrix & of twice the dimension 
when the CG method is used. The resulting matrix aTfi has the same spectrum as 
M”IM, except that each eigenvalue has multiplicity two.) Note that even though 
approximately 480 of the 576 eigenvalues are clustered about the value 1, about 50 
eigenvalues in the top end, and about 50 in the lower end of the spectrum are dis- 
tributed between the maximum and minimum values. For this matrix, A,,, = 33.08 
and I,,=O.O2928, so that x(iWHM)= 1.13 x 103. Thus M”M is not a very well- 
conditioned matrix. From the bound on the convergence rate of the CG metho 
given by the Tchebychev method [23], the number of steps needed to reduce the 
error by a factor E is less than or equal to 

IO2 , 

I 100 200 300 400 500 576 
INDEX i 

FIG. 5. Plot of the eigenvalue spectrum of the matrix M*M corresponding to the most effective 
preconditioning for Example 1. The eigenvalues are arranged in increasing order. 
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where K is the matrix condition number. For the matrix IMHA4, this gives n = 360 
for E = lo-‘. Indeed, as discussed previously, the CG method converges in only 85 
steps since only about 100 of the eigenvalues are essentially distinct. However, the 
BCG method does even better. 

We now compare the BCG method to the optimal Tchebychev method. A 
posteriori, in this example the nonsymmetric Tchebychev method of Manteuffel 
[15] can be applied to both A and M, since it happens that their eigenvalues have 
positive real parts. The Tchebychev method requires as parameters the center and 
focus of the family of ellipses which enclose the spectrum of the matrix, but do not 
enclose the origin. As discussed in [15], the optimal ellipse chosen in the 
Tchebychev method is the one that minimizes the maximum, over all eigenvalues, 
of the asymptotic convergence factors at each eigenvalue. Thus, the method is 
optimal in the sense that the asymptotic convergence factor is minimized over all 
ellipses enclosing the spectrum. With the known spectrum of M we obtained the 
parameters of the ellipse that solves this min-max problem. Appendix B discusses 
the details of this procedure. This was earlier referred to as the optimal ellipse, and 
is shown in Fig. 2. Using the parameters of this optimal ellipse, we applied the 
Tchebychev method to the matrix M. Figure 6 shows the convergence of the BCG 
and Tchebychev methods for Example 1 on the matrix M for the most effective 
preconditioning. Note that the convergence is similar for both methods, and that 
the convergence rate is predicted well by the asymptotic convergence factor for the 
Tchebychev method, which is (from Appendix B) 

r=0.1231. 

0 I 2 3 4 5 6 7 8 9 IO II 
ITERATION i 

FIG. 6. Plot of the error norm e(‘) versus iteration number i. for the BCG and Tchebychev methods 
applied to the matrix h4 corresponding to most effective preconditioning for Example 1. 
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The predicted number of steps needed to reduce the error by a factor E is 

nxint 
In E L 1 iG+l ’ 

which gives n = 10 for E = 10e9. 
By analogy with the CG method and the Tchebychev method for symmetric, 

positive-definite matrices [ 171, one may wonder whether the BCG method will per- 
farm better than the nonsymmetric Tchebychev method because account is being 
made of the internal details of the spectrum. The previous example could not show 
this, because the spectrum of M was already clustered by the preconditioning and 
the internal details of the spectrum would not affect the convergence substantially. 
To test this conjecture we applied both BCG and the Tchebychev method to the 
unpreconditioned matrix A. The optimal parameters were calculated for the 
Tchebychev method from the spectrum of A. Figure 7 shows the convergence of the 
two methods. BCG converges in 159 iterations, compared to 499 required by the 
Tchebychev method. Thus, the BCG method indeed exhibits a “superlinear” con- 
vergence rate. (Note that for Tchebychev now Y = 0.9614, giving an estimate of 527 
steps for convergence.) From these results we deduce that the BCG method com- 
pares favorably with the optimal Tchebychev method, at least on this example. The 
spectrum of the matrix operator is usually not known, so that the optimal 
Tchebychev parameters are generally not available, in contrast to the BCG method 
which does not require any parameters. 

EXAMPLES 24. The dimensions of the matrices produced in Examples 2-4 are 

0 loo 200 300 
ITERATION i 

FIG. 7. Plot of the error norm 4’) versus iteration number i, for the BCG and Tchebychev methods 
applied to the unpreconditioned matrix A of Example 1. 
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1936, 7056, and 5200, respectively. As shown in Table I, the matrices A and M for 
all of these examples have indefinite Hermitian parts. (For Example 2, the Her- 
mitian part of A has 170 negative, and 1766 positive eigenvalues.) Note that Exam- 
ples l-3 all correspond to the same physical problem, and show the dependence on 
the mesh size of the condition number of the matrices, the effectiveness of the 
preconditioning, and the performance of the BCG method. 

Table III summarizes the performance of several gradient methods on these 
examples. The number of iterations required for convergence (i.e., to reduce the 
error by a factor of 109), or the amount of reduction of the error if no convergence 
occurs in 500 iterations, is shown. Note that two additional methods are included; 
the modified minimum residual conjugate gradient (MMRCG) method [46, 471, 
and the basic CG method [16], both of which are applied to the equations written 
in real variables. The basic CG method is included even though it does not strictly 
apply to these problems. Note that in fact it diverges on the preconditioned Exam- 
ples 2-4, but converges on Example 1 in fewer iterations than does the CG method 
applied to the normal equations! (The version of the CG method applied to the 
normal equations in Table III is CG(MINRES), though CG(MINERR) performs 
similarly.) The MMRCG method is discussed below. 

Note that in all cases BCG on the preconditioned problem is far superior to the 
CG method applied to the normal equations. Also note that the preconditioning 
used on the BCG method improves the convergence substantially. Results for the 
other methods on the unpreconditioned versions of Examples 2-4 were not included 
because of the very slow convergence or divergence of these methods. Figure 8 com- 

TABLE III 

Summary of the Convergence of Various Gradient Methods on Examples 14 

Number of iterations 

Example 

1 

2 

Unprec. Prec. 
BCG BCG 

(on A) (on M) 

159 10 

498 17 

Prec. 
CG(MINRES) 

(on Ml 

85 

500 
(2.7 x 10-4) 

Prec. Prec. 
MMRCG CG 

(on W (on w 

10 25 

21 Divergent 

500 
(2.3 x 1O-2) 

500 
(1.1 x 10-i) 

33 

51 

(1.7 
ZYO-1) 

500 
(1.8 x 10-4) 

54 Divergent 

78 Divergent 

Note. Shown are the number of iterations required to achieve e(z)/ec0) < 10eg; if no convergence occurs 
in 500 iterations, then ecsoo)/e(o) is shown. 
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0 100 200 300 400 500 

ITERATION i 

FIG. 8. Comparison of the BCG and the two (normal-equation) CG methods on Example 4 for the 
most effective preconditioning. 

pares the preconditioned versions of the BCG method and the CG methods applied 
to the normal equations for Example 4 and shows the superiority of the BCG 
method. Figure 9 shows the effect of the block preconditionings on the convergence 
of the BCG method on Example 4. The convergence is improved significantly by 
the preconditioning, especially for the most effective preconditioning. It is evident 
that preconditioning is essential for the success of the BCG method, especially for 
the larger problems. Tables I and III suggest that preconditioning improves con- 
vergence by clustering the eigenvalues, rather than by reduction of condition num- 

to-* ’ 
I, 

0 100 200 300 400 500 

ITERATION i 

FIG. 9. Plots of the error norm e”’ versus iteration number i, corresponding to the block precon- 
ditionings for the BCG method on Example 4. The key to the preconditionings is the same as ir, the cap- 
tion to Fig. 3. 



180 MIKIk AND MORSE 

ber, although we note that the large condition number of M is due to a few out- 
lying eigenvalues of MHM. 

In a time-dependent simulation, a good initial guess x0 is available from the 
solution at the previous timestep or from the solution at the previous predictor- 
corrector step. Furthermore, in our applications, a smaller convergence criterion 
could be used; E = 10e4 is usually adequate. Hence, in practice, the number of 
iterations required in code runs would be smaller than the values reported here. In 
fact this has been observed in actual code runs. 

Negative Eigenvalues 

It is interesting to know how well the BCG method converges when the iteration 
matrix has eigenvalues with real parts of both signs. The issue of whether it is 
typical for A to have eigenvalues with real parts of both signs has not been fully 
resolved. Example 1 does not have any eigenvalues with negative real parts (which 
we shall refer to as “negative eigenvalues” for brevity). As for Examples 224, by 
limited application of the inverse power method with shifts, we did not locate any 
negative eigenvalues. However, these matrices, especially the larger ones, may in 
fact possess negative eigenvalues. It is difficult to find them with the inverse power 
method because they occur with large imaginary parts, clustered about the 
imaginary axis, close to other eigenvalues with positive real parts. By the Ger- 
schgorin disk theorem [14], we may expect such eigenvalues to occur when At is 
large, and when Ax is small, since the dominant term on the matrix diagonal is a 
positive term proportional to pp(Ax)*, and most off-diagonal terms are propor- 
tional to At. Since we could easily find the complete spectrum of a coarse-mesh 
problem like Example 1, we found several 12 x 12 examples which did possess 
negative eigenvalues. These occur when At and I are large, or when Ax is small. We 
also found that when the diagonal of the matrix A of Example 1 was decreased by a 
factor of 25 (which simulates the artijkial reduction of Ax by 5), and the timestep 
was increased by a factor of 2.5, leaving all other terms unchanged, the scaled 
matrix had six negative eigenvalues. Hence it is possible for the problems of interest 
to have negative eigenvalues. 

Even though A may have negative eigenvalues, note from Table I that in all four 
examples, all of the eigenvalues of M have positive real parts. It is likely that for a 
good preconditioning M may have a few, or possibly no negative eigenvalues. 

For the sake of examining the performance of the BCG method on a problem 
with negative eigenvalues, we created two examples. These are both based on the 
equilibrium and mesh of Example 1, but a higher cutoff density (6.5% of the 
maximum) is used, creating a vacuum region around the plasma. Of the 100 inter- 
nal mesh points, 20 belong to the vacuum region. In the first example (a), we solve 
-V* 6E = 0 in the vacuum, so that this term generates positive terms on the matrix 
diagonal, while for the second example (b), we solve +V2 6E = 0 in the vacuum, 
creating negative terms on the diagonal. As expected, (a) does not have any 
negative eigenvalues, while (b) has 60 negative eigenvalues (three for each of the 



PRECONDITIONED BI-CONJUGATE GRADIENT METHOD 182 

vacuum mesh points, due to the vector nature of the equation). Both examples have 
identical condition number, equal to 44.5, which is similar to the condition of A in 
Example 1. Example (b) has a similar spectrum to that of Fig. 1, except that it has 
60 eigenvalues with negative real parts distributed evenly in the interval [ - 33.1, 
-6.81, with small imaginary parts. 

The BCG method was applied to these examples. Without preconditioning, the 
BCG method converges in 82 iterations on (a), and in 189 iterations on (b). Thus 
the BCG method converges even when the matrix has negative eigenvalues, for this 
particular problem. BCG also converged on the other examples with negative eigen- 
values discussed previously (although the convergence was slow in some cases due 
to the large condition number of the matrices). Note that the difference in the num- 
ber of iterations between the two problems may be due to, in part, the fact that the 
eigenvalues of (b) are less clustered than those of (a). The preconditioned versions 
of BCG took 15 iterations to converge on both examples, as expected, since the dif- 
ference in sign is trivially removed by the preconditioning. The CG method applied 
to the normal equations was tried on these two examples. As expected, the CG 
methods converged identically on both (a) and (b). CG(MINRES) converged in 
355 iterations, while CG(MINERR) converged in 349 iterations, on the unprecon- 
ditioned problems. 

We also tried the MMRCG method on these examples. The MMRCG method 
minimizes the norm of the residual lIrJz, and is applicable to nonsymmetric 
matrices [46,47]. It does not rely on the formation of the normal equations. 
Fletcher discusses the relationship between the BCG and MMRCG methods for 
symmetric, indefinite matrices [25]. (The MMRCG method is called the “minimum 
residual algorithm” in [25].) Axelsson discusses the use of the MMRCG method 
for nonsymmetric problems which have a positive-definite symmetric part [30, 291. 
On the examples treated here, we found that the MMRCG method works com- 
parably to BCG on well-preconditioned problems in the number of iterations 
required to achieve convergence, but as the condition number of M increases, the 
number of iterations required over BCG increases (see Table III). Note that each 
iteration of MMRCG is about half as expensive as one of BCG, since only one 
matrix-vector product is required (compared to two with BCG). We observe that 
preconditioned MMRCG converges even when the Hermitian part of M is 
indefinite, for all four examples studied (see Tables I and III). However, we found 
that when the iteration matrix had eigenvalues with real parts of both signs, the 
MMRCG method did not converge. For example, on (a) above, unpreconditioned 
MMRCG took 306 iterations, while it did not converge at all on (b) (the error was 
reduced in the first few steps, after which further iterations failed to improve the 
solution). 
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VI. CONCLUSION 

The implicit time integration of the hybird plasma dynamics equations requires 
an efficient iterative method for the solution of the field equations. The set of 
simultaneous equations produced by the discretization of the field equations is 
characterized by a complex, sparse, non-Hermitian, indefinite matrix. We have 
demonstrated the use of the preconditioned bi-conjugate gradient method for the 
solution of such equations. A natural generalization of diagonal scaling and incom- 
plete LU decomposition to the block case produces a class of effective precon- 
ditionings for our problems. The method compares favorably with other iterative 
methods for the class of problems studied. For an effective preconditioning, the bi- 
conjugate gradient method proves to be a feasible iterative method for the solution 
of the field equations arising in hybrid plasma stability analysis. 

The development and further study of similar iterative methods which possess 
rapid convergence and a wide domain of applicability will allow greater flexibility 
in the design of improved implicit algorithms, with the attendant gain from the use 
of a larger timestep. 

APPENDIX A: EFFICIENT PRECONDITIONED ALGORITHM 

The BCG algorithm with incomplete block-LU decomposition preconditioning 
requires the product to the matrices DL-'AU-' and UeHAHLeHDH with a vector. 
With the preconditioning defined in Section IV, this can be accomplished efficiently 
with almost the same amount of work required in forming the products of A and 
AH with a vector. Since the off-block-diagonal parts of L and U are identical to 
those of A, and because of (23), we can write 

where Q = block-diag (A). Thus, 

and the above product can be generated by only using routines which form the 
products of DL-', DU-', Q, and D-' with a vector. By appropriately storing 
intermediate vectors, the above matrix product can be achieved by only one call to 
each of the above routines. Similarly, we have 

(U-HAHL-HDH)~={U-~DH+L--HDH~~+U-~DH(D--HQH-~~)-&X. 

The above ideas are due to Eisenstat, and are reported in [36]. 
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APPENDIX B: TCHEBYCHEV PARAMETERS 

Here we present the details of the min-max problem associated with the ellipses 
in the complex plane which enclose the spectrum of the matrix M (or A)> which are 
required in the nonsymmetric Tchebychev method. The reader is referred to Man- 
teuffel [15] for further details. We wish to find the complex parameters d and c, 
where d is the center of the family of ellipses with foci at d + c and d - c which 
enclose the spectrum of the matrix 44, and which minimize the maximum, over all 
eigenvalues, of the asymptotic convergence factors at each eigenvalue. The 
asymptotic convergence factor at eigenvalue I, is 

Care is needed in choosing the right branch of the square root [15]. We wish to 
find the values of c and d such that 

Manteuffel discusses an analytic procedure for finding c and d for a real matrix 
[ 151. For our complex matrix A4 we perform the above minimization numerically. 
Note that the maximum over A, of r(d, c, A,) occurs for A, in the hull R of M, the 
set of eigenvalues which are the vertices of the smallest convex polygon enclosing 
the spectrum of M. Thus, we numerically determine the values 

at values dk, ck defined on a mesh in the complex plane, choosing the smallest value 
of rk as the minimum. This was done rapidly on a coarse mesh, and improved by 
refining the mesh. 

Since the eigenvalues of M and A are known, we determined the optimal 
parameters for these matrices numerically as described above. For M, the hull con- 
tained seven eigenvalues, and the optimal ellipse had 

d = 0.98 1 + 0.002% and c = 0.1698 + O.O365i, 

giving an asymptotic convergence factor of 

r=0.1231, 

which was reached at eigenvalue ,I = 1.021+ 0.06681. For the matrix A, there were 
12 eigenvalues in the hull, and the ellipse parameters were 

d = 13.25 - 2.3i and c=S.l-2.4, 

581/61/l-13 
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with an associated asymptotic convergence factor 

r=0.9614, 

which was reached at 1= 0.4096 + Oi. The ellipses corresponding to these optimal 
parameters are shown in Figs. 1 and 2. These optimal parameters were used in the 
Tchebychev iteration for A4 and A in Example 1. 
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